JoVE Logo

登录

14.19 : Esters to Carboxylic Acids: Acid-Catalyzed Hydrolysis

Hydrolysis of esters under acidic conditions proceeds through a nucleophilic acyl substitution. In the presence of excess water, the reaction proceeds in a reversible manner, forming carboxylic acids and alcohols.

During hydrolysis, the ester is first activated towards nucleophilic attack through the protonation of the carboxyl oxygen atom by the acid catalyst. The protonation makes the ester carbonyl carbon more electrophilic. In the next step, water acts as a nucleophile and adds to the carbonyl carbon, followed by the loss of a proton to give the tetrahedral addition intermediate. Further, the protonation of the alkoxy group converts it into a better leaving group. Subsequently, the carbonyl group is reconstructed with the expulsion of alcohol as a leaving group. Finally, deprotonation yields a carboxylic acid as the final product and regenerates the acid catalyst.

Organic reaction mechanism diagram, showing aldol reaction steps with hydroxide ions and methanol molecules.

An acid catalyst protonates the carbonyl oxygen, thereby increasing the formation rate of the tetrahedral intermediate. Moreover, the catalyst decreases the basicity of the leaving group. Notably, the reaction is exactly the reverse of a Fischer esterification reaction.

Tags

Ester HydrolysisAcid catalyzed HydrolysisNucleophilic Acyl SubstitutionCarboxylic Acid FormationProtonationTetrahedral IntermediateAlcohol Leaving GroupFischer Esterification

PLAYLIST

Loading...
JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。