登录

Pascal's experimentally proven observations—that a change in pressure applied to an enclosed fluid is transmitted undiminished throughout the fluid and to the walls of its container—provide the foundations for hydraulics, one of the most important developments in modern mechanical technology.

Hydraulic systems are used to operate automotive brakes, hydraulic jacks, and numerous other mechanical systems. We can derive a relationship between the forces in a simple hydraulic system by applying Pascal's principle. In the system, there are two pistons at the same height, so there is no difference in pressure due to a difference in depth. The pressure due to the force acting on the smaller area is transmitted undiminished throughout the fluid and to all walls of the container. Thus, the pressure felt at the larger piston is equal to the pressure transmitted by the smaller area. This gives an equation that relates the ratios of force to area in any hydraulic system, provided that the pistons are at the same vertical height and that the friction in the system is negligible. Hydraulic systems can increase or decrease the force applied to them. To make the force larger, the pressure is applied to a larger area. For example, if a 100 N force is applied to the smaller cylinder, and the other cylinder has an area five times greater, then the output force is 500 N.

The hydraulic jack is such a hydraulic system. It is used to lift heavy loads, such as the ones used by auto mechanics to raise an automobile. A small force applied over a small area can balance a much larger force on the other side over a larger area. From Pascal's principle, it can be shown that the force needed to lift a car is less than the weight of the car.

This text is adapted from Openstax, University Physics Volume 1, Section 14.3: Pascal's Principle and Hydraulics.

Tags
Pascal s LawHydraulicsHydraulic SystemsPressure TransmissionAutomotive BrakesHydraulic JacksForce Area RatioPistonsMechanical TechnologyFluid MechanicsForce ApplicationHydraulic Principle

来自章节 13:

article

Now Playing

13.6 : Application of Pascal's Law

Fluid Mechanics

7.6K Views

article

13.1 : 流体的特性

Fluid Mechanics

3.4K Views

article

13.2 : 密度

Fluid Mechanics

11.4K Views

article

13.3 : 流体压力

Fluid Mechanics

11.8K Views

article

13.4 : 大气压力的变化

Fluid Mechanics

1.8K Views

article

13.5 : 帕斯卡定律

Fluid Mechanics

7.6K Views

article

13.7 : 压力表

Fluid Mechanics

2.7K Views

article

13.8 : 浮力

Fluid Mechanics

5.7K Views

article

13.9 : 阿基米德原理

Fluid Mechanics

7.4K Views

article

13.10 : 密度和阿基米德原理

Fluid Mechanics

6.4K Views

article

13.11 : 加速流体

Fluid Mechanics

944 Views

article

13.12 : 表面张力和表面能

Fluid Mechanics

1.2K Views

article

13.13 : 液滴和气泡内的压力过大

Fluid Mechanics

1.5K Views

article

13.14 : 接触角

Fluid Mechanics

11.3K Views

article

13.15 : 毛细管中液体的上升

Fluid Mechanics

1.1K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。