登录

The Moon orbits around the Earth. In turn, the Earth (and other planets) orbit the Sun. The space directly above our atmosphere is filled with artificial satellites in orbit. One can examine the circular orbit, the simplest kind of orbit, to understand the relationship between the speed and the period of planets and satellites with respect to their positions and the bodies that they orbit.

Nicolaus Copernicus (1473-1543) first suggested that the Earth and all other planets orbit the Sun in circles. He further noted that orbital periods increased with distance from the Sun. Later, an analysis by Johannes Kepler (1571-1630) showed that these orbits are actually ellipses, although the orbits of most planets in the solar system are nearly circular. A circular orbit is a result of a tangential velocity such that the Earth's surface curves away at the same rate that the object falls towards the Earth. The Earth's orbital distance from the Sun varies by a mere 2%. An exception is the eccentric orbit of Mercury, whose orbital distance varies by nearly 40%.Determining the orbital speed and orbital period of a satellite is much easier for circular orbits.

This text is adapted from Openstax, University Physics Volume 1, Section 13.4: Satellite Orbits and Energy.

Tags
Circular OrbitsCritical VelocitySatellitesOrbital SpeedOrbital PeriodNicolaus CopernicusJohannes KeplerSolar SystemTangential VelocityEccentric OrbitMercuryArtificial Satellites

来自章节 14:

article

Now Playing

14.13 : Circular Orbits and Critical Velocity for Satellites

Gravitation

2.8K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。