登录

The Doppler effect and Doppler shift were named after the Austrian physicist and mathematician Christian Johann Doppler in 1842, who conducted experiments with both moving sources and moving observers. Consider an observer standing on a street corner, observing an ambulance with a siren sound passing by at a constant speed. The observer experiences two characteristic changes in the sound of the siren. Initially, the sound increases in loudness as the ambulance approaches and decreases in loudness as it moves away, which is expected. But, in addition, the high-pitched siren shifts dramatically to a lower-pitched sound. As the ambulance passes by, the frequency of the sound heard by the stationary observer changes from a constant high frequency to a constant lower frequency, even though the siren is producing sound at a constant source frequency. This shift in the frequency and loudness of the sound wave heard by the observer is known as the Doppler effect.

The Doppler effect occurs not only for sound waves but for any wave when there is relative motion between the observer and the source. A Doppler shift occurs in the frequency of sound, light, and water waves, for instance. A Doppler shift can be used to determine velocity, such as when an ultrasound is reflected from blood in a medical diagnostic. Furthermore, the relative velocities of the stars and galaxies are determined by the shift in the frequencies of light waves received from themand have implied much about the origins of the universe. Modern physics has been profoundly affected by observations of Doppler shifts.

This text is adapted from Openstax, University Physics Volume 1, Section 17.7: The Doppler Effect.

Tags
Doppler EffectDoppler ShiftChristian Johann DopplerSound WavesFrequency ShiftLoudness ChangeRelative MotionWave PhenomenaUltrasound DiagnosticsVelocity MeasurementLight WavesAstronomical ObservationsUniverse OriginsModern Physics

来自章节 17:

article

Now Playing

17.14 : Doppler Effect - I

Sound

3.4K Views

article

17.1 : 声波

Sound

7.1K Views

article

17.2 : 压力波的声音

Sound

1.0K Views

article

17.3 : 对声波的感知

Sound

4.4K Views

article

17.4 : 固体和液体中的声速

Sound

2.7K Views

article

17.5 : 气体中的声速

Sound

2.9K Views

article

17.6 : 推导液体中的声速

Sound

434 Views

article

17.7 : 声强

Sound

4.0K Views

article

17.8 : 声强级

Sound

4.0K Views

article

17.9 : 声波的强度和压力

Sound

979 Views

article

17.10 : 声波:干扰

Sound

3.6K Views

article

17.11 : 干扰:光程

Sound

1.2K Views

article

17.12 : Sound Waves: Resonance

Sound

2.5K Views

article

17.13 :

Sound

440 Views

article

17.15 : 多普勒效应 - II

Sound

3.3K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。