登录

While measuring the mean of a data set, care needs to be taken when associating the mean to its central tendency. The same goes for the arithmetic mean, the geometric mean, or the harmonic mean. This is because the presence of a single outlier data value can significantly affect the mean. That is, the mean is sensitive to fluctuations in the data set.

Although certain measures of central tendency are not sensitive to outliers, there are alternative versions of the mean that get around the problem. The trimmed mean is one such example. After sorting the data, the outliers can be removed before calculating the arithmetic mean, the geometric mean, or the harmonic mean. When trimming is carried out symmetrically on the same percentage of the arranged data from both the upper and lower bounds, the data is said to be trimmed by that percentage.

Tags
Trimmed MeanCentral TendencyArithmetic MeanGeometric MeanHarmonic MeanOutliersData SetSensitivityData TrimmingStatistical Measures

来自章节 3:

article

Now Playing

3.5 : Trimmed Mean

中心趋势测量

2.8K Views

article

3.1 : 什么是中心趋势?

中心趋势测量

13.8K Views

article

3.2 : 算术平均值

中心趋势测量

13.1K Views

article

3.3 : 几何平均数

中心趋势测量

3.3K Views

article

3.4 : 谐波平均值

中心趋势测量

3.0K Views

article

3.6 : 加权平均数

中心趋势测量

4.8K Views

article

3.7 : 均方根

中心趋势测量

3.2K Views

article

3.8 : 频率分布的平均值

中心趋势测量

14.9K Views

article

3.9 : 什么是模式?

中心趋势测量

17.0K Views

article

3.10 : 中位数

中心趋势测量

16.7K Views

article

3.11 : 中频

中心趋势测量

3.5K Views

article

3.12 : 偏度

中心趋势测量

9.8K Views

article

3.13 : 偏度的类型

中心趋势测量

10.1K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。