JoVE Logo

登录

20.17 : Radical Halogenation: Thermodynamics

The thermodynamic favorability of a reaction is determined by the change in Gibbs free energy (ΔG). ΔG has two components- enthalpy (ΔH) and entropy (ΔS). The entropy component is negligible for alkane halogenation because the number of reactants and product molecules are equal. In this case, the ΔG is governed only by the enthalpy component. The most crucial factor that determines ΔH is the strength of the bonds. ΔH can be determined by comparing the energy between bonds broken and bonds formed.

Based on the thermodynamics of the reaction, radical halogenation of alkanes has a different order of reactivity for fluorination, bromination, and iodination. The ΔH for radical iodination is positive (+55 kJ/mol), which suggests that the ΔG value is also positive for this reaction. Therefore, iodination is thermodynamically unfavorable, and the reaction does not take place. On the other hand, the overall ΔH for the radical fluorination of methane is large and negative (-431 kJ/mol), making the reaction thermodynamically favorable but highly exothermic and not having any practical use. The ΔH value for chlorination and bromination is -104 kJ/mol and -33 kJ/mol, respectively, making these reactions thermodynamically favorable and practically feasible. The reaction rate comparison between chlorination and bromination shows that bromination is slower than chlorination. The rate-determining step for this reaction is the first propagation step or the hydrogen abstraction step. The first propagation step for chlorination reaction is exothermic, and the energy of activation is small, while for bromination, this step is endothermic, and the energy of activation is large, which explains why bromination is slower than chlorination.

Tags

Radical HalogenationThermodynamicsGibbs Free EnergyEnthalpyEntropyAlkane HalogenationBond StrengthFluorinationBrominationIodinationReaction FavorabilityExothermic ReactionEndothermic ReactionHydrogen Abstraction StepEnergy Of Activation

来自章节 20:

article

Now Playing

20.17 : Radical Halogenation: Thermodynamics

Radical Chemistry

3.7K Views

article

20.1 : 自由基:电子结构和几何

Radical Chemistry

3.9K Views

article

20.2 : 电子顺磁共振 (EPR) 波谱:有机自由基

Radical Chemistry

2.4K Views

article

20.3 : 自由基形成:概述

Radical Chemistry

2.0K Views

article

20.4 : 自由基形成:均溶

Radical Chemistry

3.5K Views

article

20.5 : Radical Formation: Abstraction

Radical Chemistry

3.4K Views

article

20.6 : 自由基形成:加法

Radical Chemistry

1.6K Views

article

20.7 : 自由基形成:消除

Radical Chemistry

1.7K Views

article

20.8 : 自由基反应性:概述

Radical Chemistry

2.0K Views

article

20.9 : 自由基反应性:空间位阻效应

Radical Chemistry

1.9K Views

article

20.10 : 自由基反应性:浓度效应

Radical Chemistry

1.5K Views

article

20.11 : 自由基反应性:亲电自由基

Radical Chemistry

1.8K Views

article

20.12 : 自由基反应性:亲核自由基

Radical Chemistry

2.0K Views

article

20.13 : 自由基反应性:分子内与分子间

Radical Chemistry

1.7K Views

article

20.14 : 自由基自氧化

Radical Chemistry

2.1K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。