登录

The anti-Markovnikov addition of hydrogen halides to an alkene is thermodynamically feasible only with HBr. The radical addition reaction with other hydrogen halides like HCl and HI is thermodynamically unfavorable.

Figure1

Thermodynamic factors

The temperature influences the spontaneity of a reaction, which can be evaluated based on the change in the Gibbs free energy, ΔG. If the change in Gibbs free energy, ΔG, is negative, the reaction occurs spontaneously. As shown below, ΔG can be evaluated directly from the values of the two terms, ΔH and −TΔS.

Figure2

The thermodynamic feasibility of anti-Markovnikov addition with HBr can be predicted from each propagation step involved in the radical mechanism.

In the first propagation step of the radical reaction, the ∆G sign is determined by the competition between the enthalpy and the entropy terms. At lower temperatures, radical addition with HBr and HCl dominates the enthalpy term. Consequently, ΔG is negative, indicating that the reaction is thermodynamically favorable. However, at high temperatures, the reaction is endothermic and thermodynamically unfavorable. In contrast, with HI, irrespective of temperature, both the enthalpy and entropy terms are positive. As a result, ∆G becomes positive, signifying that the reaction is thermodynamically unfavorable.

In the second propagation step, the entropy term is close to zero as the number of reactants and product molecules are equal, meaning that the ∆G sign depends on the enthalpy term. Since the enthalpy term dominates for HBr and HI, the reaction is exothermic and thermodynamically favorable. However, with HCl, ∆G is positive, meaning that the reaction is endothermic and thermodynamically unfavorable.

In summary, the two propagation steps in the reaction are thermodynamically favorable only with HBr.

Tags

Anti Markovnikov AdditionHydrogen HalidesHBrHClHIThermodynamic FeasibilityGibbs Free EnergyEnthalpyEntropyRadical MechanismReaction SpontaneityExothermic ReactionEndothermic ReactionThermal Factors

来自章节 20:

article

Now Playing

20.24 : Radical Anti-Markovnikov Addition to Alkenes: Thermodynamics

Radical Chemistry

1.7K Views

article

20.1 : 自由基:电子结构和几何

Radical Chemistry

3.8K Views

article

20.2 : 电子顺磁共振 (EPR) 波谱:有机自由基

Radical Chemistry

2.3K Views

article

20.3 : 自由基形成:概述

Radical Chemistry

2.0K Views

article

20.4 : 自由基形成:均溶

Radical Chemistry

3.3K Views

article

20.5 : Radical Formation: Abstraction

Radical Chemistry

3.3K Views

article

20.6 : 自由基形成:加法

Radical Chemistry

1.6K Views

article

20.7 : 自由基形成:消除

Radical Chemistry

1.6K Views

article

20.8 : 自由基反应性:概述

Radical Chemistry

1.9K Views

article

20.9 : 自由基反应性:空间位阻效应

Radical Chemistry

1.8K Views

article

20.10 : 自由基反应性:浓度效应

Radical Chemistry

1.5K Views

article

20.11 : 自由基反应性:亲电自由基

Radical Chemistry

1.8K Views

article

20.12 : 自由基反应性:亲核自由基

Radical Chemistry

2.0K Views

article

20.13 : 自由基反应性:分子内与分子间

Radical Chemistry

1.7K Views

article

20.14 : 自由基自氧化

Radical Chemistry

2.1K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。