登录

The turnover number of an enzyme is the maximum number of substrate molecules it can transform per unit time. Turnover numbers for most enzymes range from 1 to 1000 molecules per second. Catalase has the known highest turnover number, capable of converting up to 2.8×106 molecules of hydrogen peroxide into water and oxygen per second. Lysozyme has the lowest known turnover number of half a molecule per second.

Chymotrypsin is a pancreatic enzyme that breaks down proteins during digestion. The turnover number of chymotrypsin is 100 molecules per second. If this reaction were to occur uncatalyzed, peptide bonds would take hundreds of years to break in water at neutral pH. Thus, the high turnover number of chymotrypsin helps quick digestion of proteins in the intestine.

The enzyme ribulose 1,5-bisphosphate carboxylase oxygenase or RuBisCO has a very low turnover number of fixing 3 molecules of CO2 per second and is one of the slowest enzymes. However, the abundance of RuBisCO in nature makes up for the low turnover number. RuBisCO constitutes around 50% of the total protein found in leaves.

An enzyme with a high turnover number may not necessarily be highly efficient. The catalytic efficiency of an enzyme is given by the ratio of turnover number, kcat, to the affinity, KM. In other words, an enzyme should also have a low KM for the substrate in order to be efficient. The average catalytic efficiency of most enzymes is approximately 105 M-1s-1, meaning they are moderately efficient. Few enzymes with catalytic efficiency between 108-109 M-1s-1 are superefficient or catalytically perfect.

Tags
Turnover NumberCatalytic EfficiencyEnzymeSubstrate MoleculesCatalaseLysozymeChymotrypsinDigestionRuBisCOAffinityKcatKMCatalytic Efficiency RangeSuperefficient Enzymes

来自章节 3:

article

Now Playing

3.14 : Turnover Number and Catalytic Efficiency

Energy and Catalysis

9.6K Views

article

3.1 : 热力学第一定律

Energy and Catalysis

5.2K Views

article

3.2 : 热力学第二定律

Energy and Catalysis

4.8K Views

article

3.3 : 细胞内焓

Energy and Catalysis

5.5K Views

article

3.4 : Cell 内的熵

Energy and Catalysis

10.1K Views

article

3.5 : 自由能源简介

Energy and Catalysis

7.9K Views

article

3.6 : 细胞内的内能和能能反应

Energy and Catalysis

13.9K Views

article

3.7 : 平衡结合常数和结合强度

Energy and Catalysis

8.9K Views

article

3.8 : 自由能和平衡

Energy and Catalysis

5.9K Views

article

3.9 : 单元中的非平衡

Energy and Catalysis

4.0K Views

article

3.10 : 有机分子的氧化和还原

Energy and Catalysis

5.6K Views

article

3.11 : 酶简介

Energy and Catalysis

16.4K Views

article

3.12 : 酶和活化能

Energy and Catalysis

11.1K Views

article

3.13 : 酶动力学简介

Energy and Catalysis

19.2K Views

article

3.15 : 催化完美的酶

Energy and Catalysis

3.8K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。