登录

A cell line is a population of cells grown in vitro that can be subcultured over several generations. Normal cells cease to divide after a certain number of cell divisions, a process known as replicative senescence. This number, called the Hayflick limit, was conceptualized by Leonard Hayflick in 1961 when he observed that fetal cells grown in culture could only divide 40-60 times. This limit is due to the shortening of the telomeres during each round of cell division, preventing cell division beyond insufficient telomere length. Overexpression of the enzyme telomerase prevents telomere shortening, and is one of the methods to produce immortal cell lines.

Types of Cell Lines

Primary cell lines obtained directly from animal tissue retain the approximate genotypic and phenotypic characteristics of their cells of origin. For example, human lung cell line BEAS2B and retinal cell line RPE1 have close to the normal number of 46 chromosomes. In contrast, cell lines obtained from cancer cells can proliferate indefinitely and are called transformed cell lines. These cell lines show additional attributes like anchorage independence and lack of contact inhibition. Transformed cell lines also commonly have an altered number of chromosomes. For example, the SW480 and A549 cell lines can have up to 56 and 66 chromosomes, respectively.

Validating Cell Lines

Cell lines are prone to genomic instability and cross-contamination in the lab. Therefore, it is essential to validate them routinely. Techniques such as spectral karyotyping help identify numerical and structural chromosomal aberrations and detect cross-contamination. Cell lines can also be validated at the molecular level by STR profiling, a method used to analyze the number of short tandem repeats (STR) in DNA which are unique to each cell line.

Tags
Cell LinesIn VitroReplicative SenescenceHayflick LimitTelomeresTelomeraseImmortal Cell LinesPrimary Cell LinesTransformed Cell LinesGenomic InstabilityCross contaminationSpectral KaryotypingSTR Profiling

来自章节 32:

article

Now Playing

32.3 : Cell Lines

Analyzing Cells and Proteins

6.8K Views

article

32.1 : 细胞分离和分离概述

Analyzing Cells and Proteins

5.3K Views

article

32.2 : 细胞培养

Analyzing Cells and Proteins

15.8K Views

article

32.4 : 杂交瘤技术

Analyzing Cells and Proteins

13.2K Views

article

32.5 : 组织匀浆和细胞裂解

Analyzing Cells and Proteins

7.0K Views

article

32.6 : 亚细胞组分分离

Analyzing Cells and Proteins

6.4K Views

article

32.7 : 流式细胞术

Analyzing Cells and Proteins

11.4K Views

article

32.8 : 柱色谱原理

Analyzing Cells and Proteins

6.4K Views

article

32.9 : 柱色谱的类型

Analyzing Cells and Proteins

10.6K Views

article

32.10 : 免疫沉淀

Analyzing Cells and Proteins

5.1K Views

article

32.11 : 标记和融合蛋白

Analyzing Cells and Proteins

6.5K Views

article

32.12 : SDS 页面

Analyzing Cells and Proteins

26.0K Views

article

32.13 : 蛋白质印迹

Analyzing Cells and Proteins

14.0K Views

article

32.14 : 二维凝胶电泳

Analyzing Cells and Proteins

5.5K Views

article

32.15 : 酶联免疫吸附测定

Analyzing Cells and Proteins

11.7K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。