登录

Proteins are involved in several cellular processes and biochemical reactions. Analyzing a specific protein of interest requires it to be isolated from the other proteins in the cell. This is achieved by overexpressing the specific gene in a suitable host to produce large quantities of the target protein. A tag or label is recombined with the gene to produce a fusion protein containing the target protein and the tag. The tags on these fusion proteins can then be used for easy detection and purification processes. Affinity tags, epitope tags, reporter tags, fluorescent tags, and self-splicing intein tags, are just a few of the various protein tags available.

Glutathione S-transferase Tag

Glutathione S-transferase (GST) is a 211 amino acid protein commonly employed to tag recombinant proteins. An expression vector comprising the gene of interest and the DNA sequence for GST is used for expression in a suitable host, such as E.coli. The recombinant protein can be tagged with GST at either its N-terminal or C-terminal. The GST-tag also increases the solubility of the fusion protein compared to the non-tagged native protein. Since GST is an enzyme, it has high binding specificity to its substrate, glutathione. This substrate specificity is used to purify GST-tagged proteins by affinity chromatography using a matrix of glutathione-coated beads.

Tag Cleavage and Self-splicing

While protein tags allow the target protein to be purified, they might hinder further protein analysis. In such cases, the tags are cleaved using proteolytic enzymes. Since these proteases cleave only at specific sites, fusion proteins are designed with such cleavage sites between the target protein and tag. Another method uses self-splicing protein segments, called inteins, that splice the tags from the target protein without additional enzymes. In this method, an intein segment is also recombined into the fusion protein, positioned between the tag and target protein. These inteins self-splice only under certain conditions such as the presence of thiol compounds or specific pH and temperature. Thus, splicing can be specifically induced after purification of the fusion protein to obtain the pure target protein for further analysis.

Tags
TaggingFusion ProteinsProtein IsolationOverexpressionAffinity TagsEpitope TagsGlutathione S transferaseGST tagAffinity ChromatographyTag CleavageSelf splicingInteinsRecombinant ProteinsProteolytic Enzymes

来自章节 32:

article

Now Playing

32.11 : Tagging and Fusion Proteins

Analyzing Cells and Proteins

6.5K Views

article

32.1 : 细胞分离和分离概述

Analyzing Cells and Proteins

5.3K Views

article

32.2 : 细胞培养

Analyzing Cells and Proteins

15.8K Views

article

32.3 : 细胞系

Analyzing Cells and Proteins

6.8K Views

article

32.4 : 杂交瘤技术

Analyzing Cells and Proteins

13.2K Views

article

32.5 : 组织匀浆和细胞裂解

Analyzing Cells and Proteins

7.0K Views

article

32.6 : 亚细胞组分分离

Analyzing Cells and Proteins

6.4K Views

article

32.7 : 流式细胞术

Analyzing Cells and Proteins

11.4K Views

article

32.8 : 柱色谱原理

Analyzing Cells and Proteins

6.4K Views

article

32.9 : 柱色谱的类型

Analyzing Cells and Proteins

10.6K Views

article

32.10 : 免疫沉淀

Analyzing Cells and Proteins

5.1K Views

article

32.12 : SDS 页面

Analyzing Cells and Proteins

26.0K Views

article

32.13 : 蛋白质印迹

Analyzing Cells and Proteins

14.0K Views

article

32.14 : 二维凝胶电泳

Analyzing Cells and Proteins

5.5K Views

article

32.15 : 酶联免疫吸附测定

Analyzing Cells and Proteins

11.8K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。