登录

Nuclear magnetic resonance (NMR) spectroscopy is a very valuable analytical technique for researchers. It has been used for more than 50 years as an analytical tool. F. Bloch and E. Purcell formulated NMR in 1946 and won the 1952 Nobel Prize in Physics for their work. Biological macromolecules such as proteins, nucleic acids, lipids, and organic molecules including pharmaceutical compounds, can be studied using this versatile tool that exploits the magnetic properties of certain nuclei.

The basic principle of this technique is that nuclei, in addition to their electric charge, also have a spin. Nuclei with an odd atomic number or mass possess this property of spin, which is vital for the NMR technique. The spin is random and in random directions, similar to a spinning top. Hence, when placed under an external magnetic field, these nuclei align themselves with or against the applied field. These nuclei return to their original orientation when the external field is removed. The energy gap is then translated into a spectra that depends on the nature of the environment of the atoms, and the distance between nuclei. The resulting spectra helps study different parameters like the structure, dynamics, and properties of the samples. Properties such as reaction state,chemical environment, and interactions of the samples are examples of investigational results that can be studied with this technique.

In biology, 13C, 1H, 2H 15N, 31P, 23Na, and 19F are important biologically relevant NMR-active nuclei that help understand biochemical pathways involved in amino acid, lipid, and carbohydrate metabolism. Also, NMR offers a window into observing and quantifying numerous compounds in biological fluids, cell extracts, and tissues without the need for complex sample preparation or fractionation.

Over the past two decades, NMR has been developed to produce detailed images in a process now called magnetic resonance imaging (MRI), a name coined to avoid the use of the word “nuclear” and the concomitant implication that nuclear radiation is involved. MRI is based on NMR, in which an externally applied magnetic field interacts with the nuclei of certain atoms, particularly those of hydrogen (protons) of the body tissue.

Numerous applications of this technique, including its pivotal role in drug discovery and proteomics, are helping advance research to new heights, benefiting humanity.

Tags

NMR SpectroscopyNuclear Magnetic ResonanceBiological MacromoleculesProteinsNucleic AcidsLipidsPharmaceutical CompoundsNMR active NucleiBiochemical PathwaysAmino Acid MetabolismLipid MetabolismCarbohydrate MetabolismMagnetic Resonance Imaging MRIDrug DiscoveryProteomicsAnalytical Technique

来自章节 32:

article

Now Playing

32.19 : Applications Of NMR In Biology

Analyzing Cells and Proteins

3.6K Views

article

32.1 : 细胞分离和分离概述

Analyzing Cells and Proteins

5.4K Views

article

32.2 : 细胞培养

Analyzing Cells and Proteins

16.1K Views

article

32.3 : 细胞系

Analyzing Cells and Proteins

6.9K Views

article

32.4 : 杂交瘤技术

Analyzing Cells and Proteins

13.5K Views

article

32.5 : 组织匀浆和细胞裂解

Analyzing Cells and Proteins

7.1K Views

article

32.6 : 亚细胞组分分离

Analyzing Cells and Proteins

6.5K Views

article

32.7 : 流式细胞术

Analyzing Cells and Proteins

11.9K Views

article

32.8 : 柱色谱原理

Analyzing Cells and Proteins

6.4K Views

article

32.9 : 柱色谱的类型

Analyzing Cells and Proteins

10.6K Views

article

32.10 : 免疫沉淀

Analyzing Cells and Proteins

5.1K Views

article

32.11 : 标记和融合蛋白

Analyzing Cells and Proteins

6.5K Views

article

32.12 : SDS 页面

Analyzing Cells and Proteins

26.6K Views

article

32.13 : 蛋白质印迹

Analyzing Cells and Proteins

14.5K Views

article

32.14 : 二维凝胶电泳

Analyzing Cells and Proteins

5.6K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。