JoVE Logo

登录

33.4 : Immunofluorescence Microscopy

A fluorescence microscope uses fluorescent chromophores called fluorochromes, which can absorb energy from a light source and then emit this energy as visible light. Fluorochromes include naturally fluorescent substances (such as chlorophylls) and fluorescent stains that are added to the specimen to create contrast. Dyes such as Texas red and FITC are examples of fluorochromes. Other examples include the nucleic acid dyes 4’,6’-diamidino-2-phenylindole (DAPI), and acridine orange.

The microscope irradiates the sample with short wavelength excitation, such as ultraviolet or blue light. The chromophores absorb the excitation light and emit visible light of longer wavelengths. The excitation light is then filtered out (partly because ultraviolet light is harmful to the eyes) so that only visible light passes through the ocular lens, producing an image of the specimen in bright colors against a dark background.

Fluorescence microscopes can identify pathogens, find particular species within an environment, or find the locations of particular molecules and structures within a cell. Approaches have also been developed to distinguish living from dead cells based on whether they take up particular fluorochromes. Sometimes, multiple fluorochromes are used on the same specimen to show different structures or features.

One of the most important applications of fluorescence microscopy is immunofluorescence, which is used to identify certain microbes by observing whether antibodies bind to them. (Antibodies are protein molecules the immune system produces that attach to specific pathogens to kill or inhibit them.) This technique has two approaches: direct immunofluorescence assay (DFA) and indirect immunofluorescence assay (IFA). In DFA, specific antibodies (e.g., those that target the rabies virus) are stained with a fluorochrome. If the specimen contains the targeted pathogen, one can observe the antibodies binding to the pathogen under the fluorescent microscope. This is a primary antibody stain because the stained antibodies attach directly to the pathogen.

In IFA, secondary antibodies are stained with a fluorochrome rather than primary antibodies. Secondary antibodies do not attach directly to the organism but bind to primary antibodies. When the unstained primary antibodies bind to the pathogen, the fluorescent secondary antibodies can be observed binding to the primary antibodies. Thus, the secondary antibodies are attached indirectly to the pathogen. Since multiple secondary antibodies can often attach to a primary antibody, IFA increases the number of fluorescent antibodies attached to the specimen, making it easier to visualize its features.

This text is adapted from Openstax, Microbiology 2e, Section 2.4: Staining Microscopic Specimens.

Tags

Immunofluorescence MicroscopyFluorescence MicroscopeFluorochromesFluorescent StainsExcitation LightVisible LightDAPIAcridine OrangeAntibodiesDirect Immunofluorescence Assay DFAIndirect Immunofluorescence Assay IFAPathogen IdentificationLiving Vs Dead CellsSpecimen Imaging

来自章节 33:

article

Now Playing

33.4 : Immunofluorescence Microscopy

Visualizing Cells, Tissues, and Molecules

9.8K Views

article

33.1 : 使用光学显微镜对生物样品进行成像

Visualizing Cells, Tissues, and Molecules

4.5K Views

article

33.2 : 相差和微分干涉对比显微镜

Visualizing Cells, Tissues, and Molecules

7.4K Views

article

33.3 : 固定和切片

Visualizing Cells, Tissues, and Molecules

4.1K Views

article

33.5 : 免疫细胞化学和免疫组化

Visualizing Cells, Tissues, and Molecules

10.5K Views

article

33.6 : 共聚焦荧光显微镜

Visualizing Cells, Tissues, and Molecules

12.9K Views

article

33.7 : 活细胞中的蛋白质动力学

Visualizing Cells, Tissues, and Molecules

2.0K Views

article

33.8 : 全内反射荧光显微镜

Visualizing Cells, Tissues, and Molecules

5.6K Views

article

33.9 : 原子力显微镜

Visualizing Cells, Tissues, and Molecules

3.3K Views

article

33.10 : 超分辨率荧光显微镜

Visualizing Cells, Tissues, and Molecules

6.8K Views

article

33.11 : 电子显微镜概述

Visualizing Cells, Tissues, and Molecules

8.4K Views

article

33.12 : 扫描电子显微镜

Visualizing Cells, Tissues, and Molecules

4.1K Views

article

33.13 : 透射电子显微镜

Visualizing Cells, Tissues, and Molecules

5.3K Views

article

33.14 : 电子显微镜样品的制备

Visualizing Cells, Tissues, and Molecules

5.3K Views

article

33.15 : Immunogold 电子显微镜

Visualizing Cells, Tissues, and Molecules

3.9K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。