登录

The uniform distribution is a continuous probability distribution of events with an equal probability of occurrence. This distribution is rectangular.

Two essential properties of this distribution are

  1. The area under the rectangular shape equals 1.
  2. There is a correspondence between the probability of an event and the area under the curve.

Further, the mean and standard deviation of the uniform distribution can be calculated when the lower and upper cut-offs, denoted as a and b, respectively, are given. For a random variable x, in a uniform distribution, given a and b, the probability density function is f(x) is calculated as

Equation1

Consider data of 55 smiling times, in seconds, of an eight-week-old baby:

10.4, 19.6, 18.8, 13.9, 17.8, 16.8, 21.6, 17.9, 12.5, 11.1, 4.9, 12.8, 14.8, 22.8, 20.0, 15.9, 16.3, 13.4, 17.1, 14.5, 19.0, 22.8, 1.3, 0.7, 8.9, 11.9, 10.9, 7.3, 5.9, 3.7, 17.9, 19.2, 9.8, 5.8, 6.9, 2.6, 5.8, 21.7, 11.8, 3.4, 2.1, 4.5, 6.3, 10.7, 8.9, 9.4, 9.4, 7.6, 10.0, 3.3, 6.7, 7.8, 11.6, 13.8 and, 18.6. Assume that the smiling times follow a uniform distribution between zero and 23 seconds, inclusive. Note that zero and 23 are the lower and upper cut-offs for the uniform distribution of smiling times.

Since the smiling times' distribution is a uniform distribution, it can be said that any smiling time from zero to and including 23 seconds has an equal likelihood of occurrence. A histogram that can be constructed from the sample is an empirical distribution that closely matches the theoretical uniform distribution.

For this example, the random variable, x = length, in seconds, of an eight-week-old baby's smile. The notation for the uniform distribution is x ~ U(a, b) where a = the lowest value (lower cut-off) of x and b = the highest value (upper cut-off) of x. For this example, a = 0 and b = 23.

The mean, μ, is calculated using the following equation:

Equation2

The mean for this distribution is 11.50 seconds. The smile of an eight-week-old baby lasts for an average time of 11.50 seconds.

The standard deviation, σ, is calculated using the formula:

Equation3

The standard deviation for this example is 6.64 seconds.

This text is adapted from Openstax, Introductory Statistics, Section 5.2 The Uniform Distribution

Tags
Uniform DistributionProbability DistributionContinuous DistributionProbability Density FunctionMeanStandard DeviationRandom VariableCut offsSmiling TimesEmpirical DistributionTheoretical DistributionHistogramLower Cut offUpper Cut off

来自章节 6:

article

Now Playing

6.9 : Uniform Distribution

Probability Distributions

4.6K Views

article

6.1 : 统计中的概率

Probability Distributions

11.9K Views

article

6.2 : 随机变量

Probability Distributions

11.1K Views

article

6.3 : 概率分布

Probability Distributions

6.3K Views

article

6.4 : 概率直方图

Probability Distributions

10.8K Views

article

6.5 : 不寻常的结果

Probability Distributions

3.1K Views

article

6.6 : 期望值

Probability Distributions

3.7K Views

article

6.7 : 二项式概率分布

Probability Distributions

9.9K Views

article

6.8 : 泊松概率分布

Probability Distributions

7.6K Views

article

6.10 : 正态分布

Probability Distributions

10.3K Views

article

6.11 : z 分数和曲线下面积

Probability Distributions

10.2K Views

article

6.12 : 正态分布的应用

Probability Distributions

4.8K Views

article

6.13 : 抽样分布

Probability Distributions

11.2K Views

article

6.14 : 中心极限定理

Probability Distributions

13.3K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。