登录

An emf is induced when the magnetic field in a coil is changed by pushing a bar magnet into or out of the coil. emfs of opposite signs are produced by motion in opposite directions, and the directions of emfs are also reversed by reversing poles. The same results are produced if the coil is moved rather than the magnet—it is the relative motion that is important. The faster the motion, the greater the emf. Additionally, there is no emf when the magnet is stationary relative to the coil.

A similar effect can be produced using two circuits, where the current in one circuit induces a current in a second, nearby circuit. For example, if a current-carrying circuit is moved toward or away from the other stationary circuit, then emf is induced in the other circuit. Additionally, if the current in the first circuit is controlled via a switch, then opening and closing of the switch induces an emf in the other circuit.

In all the above scenarios, the induced emf induces a current, called an induced current. The common factor in all these observations is changing magnetic flux. Here, the magnetic flux is changing, either because the magnetic field is time-dependent or because the motion of the circuit changes the magnetic flux passing through it. Induction occurs because of the non-static nature of the forces involved. Careful consideration must be given while analyzing static electric fields produced with charge distributions and non-static electric fields produced due to time-varying magnetic fields.

Tags
Induced EmfMagnetic FieldCoilBar MagnetRelative MotionInduced CurrentChanging Magnetic FluxCurrent carrying CircuitElectromagnetic InductionTime varying FieldsStatic Electric Fields

来自章节 30:

article

Now Playing

30.1 : Induction

Electromagnetic Induction

3.7K Views

article

30.2 : 法拉第定律

Electromagnetic Induction

3.7K Views

article

30.3 : 楞次定律

Electromagnetic Induction

3.3K Views

article

30.4 : 运动电动势

Electromagnetic Induction

3.0K Views

article

30.5 : 法拉第磁盘 Dynamo

Electromagnetic Induction

1.9K Views

article

30.6 : 感应电场

Electromagnetic Induction

3.4K Views

article

30.7 : 感应电场:应用

Electromagnetic Induction

1.4K Views

article

30.8 : 涡流

Electromagnetic Induction

1.4K Views

article

30.9 : 位移电流

Electromagnetic Induction

2.7K Views

article

30.10 : 位移电流的意义

Electromagnetic Induction

4.2K Views

article

30.11 : 电磁场

Electromagnetic Induction

2.0K Views

article

30.12 : 麦克斯韦电磁方程

Electromagnetic Induction

2.9K Views

article

30.13 : 麦克斯韦方程组中的对称性

Electromagnetic Induction

3.1K Views

article

30.14 : Ampere-Maxwell 定律:解决问题

Electromagnetic Induction

438 Views

article

30.15 : 麦克斯韦方程组的微分形式

Electromagnetic Induction

339 Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。