登录

James Clerk Maxwell (1831–1879) was one of the major contributors to physics in the nineteenth century. Although he died young, he made major contributions to the development of the kinetic theory of gases, to the understanding of color vision, and to understanding the nature of Saturn's rings. He is probably best known for having combined existing knowledge on the laws of electricity and magnetism with his insights into a complete overarching electromagnetic theory, which is represented by Maxwell's equations.

The four basic laws of electricity and magnetism were discovered experimentally through the work of physicists such as Oersted, Coulomb, Gauss, and Faraday. Maxwell discovered logical inconsistencies in these earlier results and identified the incompleteness of Ampère's law as their cause.

Maxwell's equations led to the prediction of electromagnetic waves that can travel through space without a material medium, implying that the speed of electromagnetic waves is equal to the speed of light. Prior to Maxwell's work, experiments had already indicated that light was a wave phenomenon, although the nature of the waves was yet unknown. So, light was known to be a wave, and Maxwell predicted the existence of electromagnetic waves that traveled at the speed of light.

The conclusion seemed inescapable that light must be a form of electromagnetic radiation. However, Maxwell's theory showed that other wavelengths and frequencies than those of light were possible for electromagnetic waves. He showed that electromagnetic radiation with the same fundamental properties as visible light should exist at any frequency. It remained for others to test and confirm this prediction.

Tags
Maxwell s EquationsElectromagnetismElectromagnetic WavesElectromagnetic RadiationJames Clerk MaxwellElectricityMagnetismKinetic Theory Of GasesColor VisionAmp re s LawOerstedCoulombGaussFaradaySpeed Of LightWave Phenomenon

来自章节 30:

article

Now Playing

30.12 : Maxwell's Equation Of Electromagnetism

Electromagnetic Induction

2.9K Views

article

30.1 : 感应

Electromagnetic Induction

3.7K Views

article

30.2 : 法拉第定律

Electromagnetic Induction

3.7K Views

article

30.3 : 楞次定律

Electromagnetic Induction

3.3K Views

article

30.4 : 运动电动势

Electromagnetic Induction

3.0K Views

article

30.5 : 法拉第磁盘 Dynamo

Electromagnetic Induction

1.9K Views

article

30.6 : 感应电场

Electromagnetic Induction

3.4K Views

article

30.7 : 感应电场:应用

Electromagnetic Induction

1.4K Views

article

30.8 : 涡流

Electromagnetic Induction

1.4K Views

article

30.9 : 位移电流

Electromagnetic Induction

2.7K Views

article

30.10 : 位移电流的意义

Electromagnetic Induction

4.2K Views

article

30.11 : 电磁场

Electromagnetic Induction

2.0K Views

article

30.13 : 麦克斯韦方程组中的对称性

Electromagnetic Induction

3.1K Views

article

30.14 : Ampere-Maxwell 定律:解决问题

Electromagnetic Induction

438 Views

article

30.15 : 麦克斯韦方程组的微分形式

Electromagnetic Induction

339 Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。