登录

Electromagnetic waves are categorized according to their wavelengths and frequencies, giving the electromagnetic spectrum. These waves are classified as radio, infrared, ultraviolet, etc. Radio waves refer to electromagnetic radiation with wavelengths ranging from millimeters to kilometers. Radio waves are commonly used for audio communications (i.e., radios) and typically result from an alternating current in the wires of a broadcast antenna. They cover a broad wavelength range and are used for AM (amplitude modulated) and FM (frequency modulated) radio, cellular telephones, and TV signals. Microwaves are the highest-frequency electromagnetic waves, produced by currents in macroscopic circuits and devices. Microwave frequencies range from about 109 Hz to nearly 1012 Hz. Most satellite-transmitted information is carried in microwaves. Radar is a common application of microwaves. By detecting and timing the microwave echoes, radar systems can determine the distance to objects as diverse as clouds, aircraft, or even the surface of Venus.

Infrared radiation is generally produced by thermal motion and the vibration and rotation of atoms and molecules. About half of the solar energy arriving to Earth is in the infrared region, with most of the rest in the visible part of the spectrum. Reconnaissance satellites can detect buildings, vehicles, and even individual humans by their infrared emissions.

Visible light is the narrow segment of the electromagnetic spectrum to which the normal human eye responds. We usually refer to visible light as having wavelengths between 400 nm and 750 nm. X-rays are produced by intra-atomic transitions and fast collisions. They are used to image objects that are opaque to visible light, such as the human body or aircraft parts. Gamma-rays are produced during nuclear decay and have the highest frequency in the electromagnetic spectrum.

Tags
Electromagnetic SpectrumElectromagnetic WavesRadio WavesAudio CommunicationsMicrowavesSatellite TransmissionRadar ApplicationsInfrared RadiationSolar EnergyVisible LightX raysGamma raysNuclear DecayWavelength Range

来自章节 33:

article

Now Playing

33.3 : The Electromagnetic Spectrum

Electromagnetic Waves

13.5K Views

article

33.1 : 电磁波

Electromagnetic Waves

8.3K Views

article

33.2 : 产生电磁辐射

Electromagnetic Waves

2.3K Views

article

33.4 : 电磁波动方程

Electromagnetic Waves

901 Views

article

33.5 : 平面电磁波 I

Electromagnetic Waves

3.5K Views

article

33.6 : 平面电磁波 II

Electromagnetic Waves

3.0K Views

article

33.7 : 电磁波的传播速度

Electromagnetic Waves

3.3K Views

article

33.8 : 物质中的电磁波

Electromagnetic Waves

2.9K Views

article

33.9 : 电磁波携带的能量

Electromagnetic Waves

2.7K Views

article

33.10 : 电磁波强度

Electromagnetic Waves

4.2K Views

article

33.11 : 动量和辐射压力

Electromagnetic Waves

1.8K Views

article

33.12 : 辐射压力:问题解决

Electromagnetic Waves

259 Views

article

33.13 : 驻扎电磁波

Electromagnetic Waves

1.4K Views

article

33.14 : 腔中的驻波

Electromagnetic Waves

780 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。