JoVE Logo

登录

4.4 : pH Homeostasis

Acid-base homeostasis is essential for maintaining normal physiological activities in humans. The pH of various body fluids is strictly regulated because it is critical for the optimal activity of enzymes involved in metabolic reactions. Enzymes are basically proteins, so, any significant change in pH can affect their structure and activity. In humans, pH is regulated using three primary mechanisms— chemical buffer systems, respiratory regulation, and renal regulation.

Respiratory Regulation of pH

CO2 reacts with water in the blood plasma and body fluids to form carbonic acid— a weak acid that further dissociates into H+ and HCO3 ions. Usually, the levels of CO2 and carbonic acids are in equilibrium. But when the CO2 surpasses the normal level, more carbonic acid is produced, making the blood pH acidic. Under such conditions, the brain's respiratory control center prompts the lungs to increase respiration rate, expelling surplus CO2. This loss of CO2 lowers blood carbonic acid levels and aids in bringing pH levels back to normal.

In contrast, when the blood pH becomes more alkaline due to an increase in HCO3 ions, the respiratory center lowers the respiration rate increasing blood CO2 levels. This further increases the concentration of H+ ions, restoring the blood pH to normal level.

Renal Regulation of pH

The kidneys regulate pH through the excretion of waste products in the urine. During acidosis, meaning when the blood pH is acidic, kidneys secrete excess H+ ions into the urine. The kidneys then promote the reabsorption of HCO3 ions in the blood that binds to H+ ions producing H2CO3 and restoring normal pH. During alkalosis or when the blood pH is alkaline, kidneys release fewer H+ ions through urine and limits the reabsorption of HCO3 ions in the blood. In addition, kidneys remove more ammonia through the urine during alkalosis.

Tags

PH HomeostasisAcid base HomeostasisPhysiological ActivitiesEnzyme ActivityChemical Buffer SystemsRespiratory RegulationRenal RegulationCarbonic AcidCO2 EquilibriumAcidosisAlkalosisH IonsHCO3 IonsKidney Function

来自章节 4:

article

Now Playing

4.4 : pH Homeostasis

Biochemistry of the Cell

11.9K Views

article

4.1 : 对人体功能至关重要的化合物

Biochemistry of the Cell

5.3K Views

article

4.2 : 水在人类生物学中的作用

Biochemistry of the Cell

8.1K Views

article

4.3 : 电解质简介

Biochemistry of the Cell

9.6K Views

article

4.5 : 官能团概述

Biochemistry of the Cell

9.6K Views

article

4.6 : 碳水化合物简介

Biochemistry of the Cell

12.1K Views

article

4.7 : 碳水化合物代谢

Biochemistry of the Cell

8.5K Views

article

4.8 : 糖作为储能分子

Biochemistry of the Cell

2.1K Views

article

4.9 : 什么是脂质?

Biochemistry of the Cell

19.3K Views

article

4.10 : 人体内的脂质衍生化合物

Biochemistry of the Cell

4.3K Views

article

4.11 : 脂肪作为能量储存分子

Biochemistry of the Cell

4.1K Views

article

4.12 : 什么是蛋白质?

Biochemistry of the Cell

7.2K Views

article

4.13 : 蛋白质组织

Biochemistry of the Cell

6.3K Views

article

4.14 : 球状蛋白质

Biochemistry of the Cell

7.0K Views

article

4.15 : 纤维蛋白

Biochemistry of the Cell

1.9K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。