登录

True weight is the measure of the gravitational force acting on an object. However, if the object accelerates, its measured weight is different from its true weight. Similar observations can be made when the object is submerged in water. An object's weight in water is its apparent weight, which is equal to the difference between its true weight and the buoyant forces.

Consider a person standing on a bathroom scale inside an elevator. If the scale is accurate at rest, its reading equals the magnitude of the force the person exerts downward on it. The only forces acting on the person are their weight and the upward normal force of the scale. At rest, the net force on the person is zero. According to Newton's third law, weight and normal force are equal in magnitude and opposite in direction, so the normal force equals the true weight of the person. The bathroom scale reads the normal force exerted by the scale on the person.

If the elevator accelerates upward with constant acceleration, the apparent weight is more than the true weight as the net force acting on it is greater than zero. However, if the elevator decelerates, the apparent weight is less than the true weight of the object as the net force acting on the object is negative. If the elevator is in free-fall, the person feels weightless as they and the elevator are falling under gravitational acceleration. This phenomenon is called apparent weightlessness.

The "weightlessness" experienced by people in a satellite orbit close to the Earth is the same apparent weightlessness experienced in a free-falling elevator. The force of gravity causes the satellite to "fall" out of its natural straight-line path. Thus, although the force of gravity acts on objects within the satellite, the objects experience an apparent weightlessness because they and the satellite are accelerating together as in free fall.

Tags
Apparent WeightTrue WeightGravitational ForceBuoyant ForcesNormal ForceNet ForceAccelerationWeightlessnessFree fallNewton s Third LawScale ReadingWeight MeasurementElevator DynamicsSatellite Orbit

来自章节 5:

article

Now Playing

5.9 : Apparent Weight

Newton's Laws of Motion

7.6K Views

article

5.1 :

Newton's Laws of Motion

12.0K Views

article

5.2 : 力的类型

Newton's Laws of Motion

9.3K Views

article

5.3 : 牛顿第一定律:引言

Newton's Laws of Motion

19.6K Views

article

5.4 : 牛顿第一定律:应用

Newton's Laws of Motion

13.5K Views

article

5.5 : 内力和外力

Newton's Laws of Motion

11.9K Views

article

5.6 : 牛顿第二定律

Newton's Laws of Motion

20.0K Views

article

5.7 : 质量和重量

Newton's Laws of Motion

11.3K Views

article

5.8 : 失重

Newton's Laws of Motion

4.8K Views

article

5.10 : 牛顿第三定律:简介

Newton's Laws of Motion

19.5K Views

article

5.11 : 牛顿第三定律:示例

Newton's Laws of Motion

20.0K Views

article

5.12 : 绘制自由体图:规则

Newton's Laws of Motion

12.5K Views

article

5.13 : 免费体图:示例

Newton's Laws of Motion

11.5K Views

article

5.14 : 惯性参考系

Newton's Laws of Motion

6.8K Views

article

5.15 : 非惯性参考系

Newton's Laws of Motion

5.6K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。