登录

Consider a turbine operating under steady-flow conditions. The control volume is drawn around the turbine, with fluid entering at one point and exiting at another. The turbine extracts energy from the fluid, which performs mechanical work (shaft work).

For steady flow systems, the time derivative of the stored energy becomes zero since there is no energy accumulation within the control volume. This simplifies the energy equation to:

Equation 1

Since we focus on work done by the turbine shaft and assume negligible heat transfer, Q̇ ≈ 0. Therefore, the energy equation simplifies further to:

Equation 2

The flow is divided into two components: the fluid entering the turbine (inlet) and exiting the turbine (outlet). The mass flow rate at both points is constant, and the energy flux at the inlet and outlet is given by:

Equation 3

Where:

-is the mass flow rate,

- ũ1, V1, and z1 refer to the internal energy, velocity, and height at the inlet,

- ũ2, V2, and z2 refer to the internal energy, velocity, and height at the outlet,

In a typical turbine, the fluid's internal and kinetic energy decreases as it passes through the turbine, which results in useful shaft work being done. Suppose a turbine operates with an inlet velocity of V1=50 m/s, an outlet velocity of V2= 20 m/s, an inlet height z1=100 m, and an outlet height z2=90m. Assume the internal energy change is small compared to the kinetic and potential energy changes, and the mass flow rate is 10 kg/s.

Equation 4

As a result, the turbine produces approximately 11.48 kW of mechanical power by extracting energy from the flowing fluid.

来自章节 18:

article

Now Playing

18.7 : Conservation of Energy in Control Volume

Finite Control Volume Analysis

259 Views

article

18.1 : Conservation of Mass in Finite Cotrol Volume

Finite Control Volume Analysis

729 Views

article

18.2 : Conservation of Mass in Fixed, Nondeforming Control Volume

Finite Control Volume Analysis

647 Views

article

18.3 : Conservation of Mass in Moving, Nondeforming Control Volume

Finite Control Volume Analysis

575 Views

article

18.4 : Linear Momentum in Control Volume

Finite Control Volume Analysis

558 Views

article

18.5 : Application of the Linear Momentum Equation

Finite Control Volume Analysis

26 Views

article

18.6 : Moment-of-Momentum Equation

Finite Control Volume Analysis

36 Views

article

18.8 : Application of the Energy Equation

Finite Control Volume Analysis

149 Views

article

18.9 : Design Example: Forces in Sluice Gate

Finite Control Volume Analysis

126 Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。