登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

对流增强交付(CED)已被提议作为一个广泛的神经系统疾病的治疗选择。为了准备专业医护人员采用CED的,需要访问的培训模式。我们描述了使用琼脂糖凝胶作为人脑的这样的试验,研究和训练的模型。

摘要

对流增强交付(CED)已被提议作为一个广泛的神经系统疾病的治疗选择。 Neuroinfusion导管海关允许正压大量流量,提供更大量疗法比传统给药方法颅内目标。实时磁共振成像的临床应用指导CED(rCED)在于准确瞄准,监测治疗,并确定并发症的能力。与训练,rCED是有效和并发症可以被最小化。大脑的琼脂糖凝胶模型提供了一种方便的工具CED测试,研究和培训。模拟大脑rCED允许模拟手术的做法,同时还提供可视化的输液反馈。输注的分析允许对分布分数(VD / VI)使学员以验证模型的相似性相比,人脑组织的计算。本文介绍了我们的琼脂糖凝胶假体脑并概述重要的我在同时解决过程中的CED输液面临神经系统疾病的治疗常见的陷阱,一个CED输液和分析协议trics。

引言

对流增强输送(CED)已被提议作为用于神经病症包括恶性脑瘤,癫痫,代谢疾病,神经变性疾病(如帕金森病)1,中风和创伤2的广谱治疗选择。 CED采用正压主体流动的药物或其它输注液的分布。 CED提供安全,可靠,且均匀交付分子量化合物,从低到高,在临床相关卷3。传统的药物递送到脑组织受到严重的血-脑屏障4的限制。由内皮细胞间的紧密连接构成的毛细血管在大脑中,血 - 脑屏障块极性和高分子量的分子进入大脑实质内形成。通过海关直接实质内脑灌注可以克服以前的治疗药物传递方式的局限性并允许使用的治疗剂,不会穿过血-脑屏障,因此,此前已作为可行的治疗方案5不可用。

从健康的美国国立卫生研究院(NIH)的研究人员描述土木工程署在上世纪90年代初,作为实现更大的治疗药物浓度的方法比单纯扩散6-8。 CED的第一方法涉及植入一个或多个导管进入大脑,连接输液泵的导管,并直接泵送治疗剂进入目标区域。增加的分布分数和相对稳定的浓度被报道发生如由输液泵产生的正压引起的组织扩张,并允许该药物9的渗透。

最根本的技术CED在很大程度上仍然是它第一次描述的相同。在导管设计10,输液技术进展 11,管路压力监测2,并实时MRI监测来纠正脑移位12,13,优化多个共线输注14,并监测输液损失15都增加了治疗10的安全性和有效性。额外的重要性已经被放置在导管的设计和输注策略,包括流速。成功的CED,用有限的导管回流和组织损伤,已与相关导管设计和输注速度。使用的导管的具有窄的直径和低输注率,以限制沿脑导管接口倒流以及损坏限制在导管末端16。磁共振成像提供了正确的位置,输液导管置入的视觉确认,因而给药,同时还允许修正输液回流或异常分娩17。 MR图像,也可以用于近似和跟踪分配的体积(VD输注的药物)。在VD是使 ​​用磁共振成像信号强度值大于上述平均值与周围非灌注胶为18分割阈值三个标准差来计算。在Vd为CED为一种有用的测量,因为它代表分布在大脑中的药物的体积。随着输注(六)音量,比率可以生成(VD / VI)量化所涵盖的输注药物的体积。

琼脂糖凝胶体模模仿人类大脑的理解CED等重要几个关键的机械性能:VD,凝胶导管相互作用,多孔弹性性能,并输注云形态10。的0.2%琼脂糖凝胶的混合物已经显示模拟体内由于CED引起凝胶扩张改变当地的孔隙分数。类似的毛孔小部分人脑类似的促进互动和VD 19的精确测量。此外,类似浓度的garose凝胶如0.6%和0.8%也显示类似输液压力分布至脑20。另外,透光性琼脂糖凝胶中提供的导管放置和输注回流的实时可视化的优点。琼脂糖凝胶假体是相对廉价的生产。琼脂糖凝胶假体的费用可能是关键,在整个神经外科未来的广泛培训。由于这些特性,琼脂糖凝胶提供了一个有用的替代,复制了许多人的大脑注入的关键属性,而无需使用脑组织。

如上所述,图像引导到CED琼脂糖凝胶模型提供的体外方法进行测试,研究和培训一个有益的。本文的目的是描述如何重新琼脂糖凝胶假体,勾勒适当CED测试和分析方案,并解决在CED输注用于神经系统疾病的治疗面临的常见错误。

研究方案

凝胶幻影1。制备及染料

  1. 通过以1,000 ml去离子水将2克0.1%的琼脂糖粉制备0.2%琼脂糖凝胶上。搅拌约1分钟,将溶液以保证适当的混合;并立即微波解决方案,在3分钟的间隔为9分钟,或直至清晰,间隔之间搅拌。
  2. 而琼脂糖凝胶是液体,将溶液倒入5厘米×5厘米×5厘米的容器中。允许空间在容器的顶部,以加水,并允许琼脂糖凝胶冷却并沉降。
  3. 一旦琼脂糖凝胶凝固后(约1-2小时),添加1厘米的水凝胶与冷藏的顶部。最好是在24-48小时的混合使用的凝胶,但它可以存储多达一周冷藏10。
  4. 在60毫升注射器由50毫升0.017%溴酚蓝染料(BPB),和钆特醇无线电造影2mM的制备无线电对比染料。
    1. 结合8.5 BPB染料毫克50米升去离子水来创建0.017%BPB溶液。
    2. 加入0.2毫升股票0.5M的钆特醇容量为50毫升0.017%BPB解决方案来创建一个2毫米钆特醇溶液。

2,准备输液系统

  1. 注射泵的输注系统(优选方法):用于注射器泵制剂,直接连接输液导管的注射器,通过该压力传感器,减少了输液管线的死体积。注射泵的排出功能可以用于使用大丸剂大于导管以10微升/分钟的速率填充量来清除空气中的行。
  2. 管泵输注系统(另一种方法):连接包含无线电造影剂的输液泵注射器。附加的压力传感器,以与连接到第四显示器换能器的泵出口。附加一个地下16输液导管与压力传感器的开口端。注意:在地下16输注导管的前端有一个内直径米为0.2毫米和0.35毫米的外径。尖端是由熔融二氧化硅和小费长度为3毫米。它增加至约0.75毫米,并继续于15 mm,导管那么步骤在一个锥形时尚到1.6毫米或16 G。
  3. 通过清除系统约15分钟,在16.667微升/分钟,以除去任何气泡制备输注。不要超过16.667μL/ min的流速,因为机器会停止输液,由于高线压力。以下所附的输注导管的线离开的输液泵,空气通过使用输注泵"大丸剂"功能吹扫管线。
  4. 装上输液导管安装和轨迹帧到凝胶假体容器(5厘米×5厘米×5厘米),发生在MRI检查。

3,CED凝胶灌注及MR扫描

  1. 零压力值(毫米汞柱)开始输液前录得的四显示器。
  2. 插入输液导管进入琼脂糖凝胶瓦特第i个输液泵运行在最低流速可能的,在这种情况下,1.667微升/分钟。
  3. 开始在MR ​​扫描中,使用表1中列出的参数,并不断注入以1.667微升/分钟的速率。注入的凝胶,以恒定速率输注,直至总体积达到60微升(约38分钟)。
  4. 连续扫描凝胶在3分钟和50秒的间隔。记录压力读数,每隔60秒。一旦注入量达到60微升,关闭输液泵;和完整的MR扫描,同时继续记录压力读数。

4,MR数据分析

  1. 为了分析的MR图像,使用适当的DICOM浏览器与ROI分割功能。
  2. 选择正确的帧中的每个扫描标记的导管, 如图1所示的横截面。
  3. 使用"投资回报率 - 矩形"工具,选择凝胶,不包括任何的最大部分输注部位的部分。该软件将输出与标准偏差的平均像素密度。找到对应于三个标准偏差与平均值的值。此值被用作阈值,用于确定当对比度存在99.7%的置信度。
  4. 使用"投资回报率 - 圈"的工具,环绕输注部位有一个足够大的圆圈,这给一个唯一的名称。
  5. 选择圆和使用"ROI - 设置像素值"的工具,则在步骤4.3中找到输入到阈值",如果当前值大于"框中,只要选中这一行。然后在"这个新的价值:"框中,输入一个较大的值(25,000)。重置像素密度来选择前面所定义的阈值所包围的区域。
  6. 接下来,使用"投资回报率 - 成长区(2D/3D分割)"工具,选择2D的地区,与初始半径参数= 2的信心算法,刷的投资回报率。点击输注部位的软件来计算总面积的内径Ø上本地区。
  7. 假设一个球形输液云,计算从该区域扩散通过下列公式的体积:V =4/3π(√(面积/π)),3

结果

解释和分析CED输液涉及的几个重要因素,如分配分数和输液回流。分配比例计算很大程度上取决于Vd的计算。因此,MR图像的准确解释是关键。我们提出了用于可靠地再现这些测量如上面列出的半自动化方法。这些方法客观地确定输液云和横截面面积的大致半径。而可变,在琼脂糖凝胶输液云往往被证明是球形的。假设一个球形输液云,该半径可以被用来确定在VD为CED输注。 VD / VI的琼脂糖凝胶输?...

讨论

为确保输液成功的关键步骤是:吹扫气的输液管,混合琼脂糖凝胶,分析的MR数据,使用小的内导管的直径,使用阶梯导管设计,以减少回流,并最小化所感受到的压力凝胶或组织到其中的药物被注入。如前所述,主要损害输液的成功是输液管的空气。正确地和彻底吹扫空气的输液管是至关重要的,以确保没有空气进入输液。同样重要的是混合的琼脂糖凝胶电泳图谱。不当合成的凝胶可能导致?...

披露声明

作者宣称,他们有没有竞争的财务权益。

致谢

笔者想从磁共振成像设备在塞姆斯 - 墨菲诊所,孟菲斯,田纳西州以及神经外科部门田纳西大学健康科学中心在孟菲斯大学,田纳西感谢工作人员。

材料

NameCompanyCatalog NumberComments
ProhanceBraccoGadoteridol radio contrast media
Bromophenol Blue DyeBiorad161-0404Dye for infusate visualization
Agarose Gel PowderBiorad161-3101EDUAgarose powder for creating gels
Medrad Veris MR Vital Signs MonitorMedradMR safe infusion pressure monitor
16 Gauge SmartFlow CatheterSurgiVisionInfusion catheter
Medrad Continuum MR Infusion SystemMedradMR safe infusion pump
SMART Frame MRI Guided Trajectory FrameClearPointInfusion catheter frame
Osirix Imaging Software and DICOM ViewerOsirix Imaging SoftwareOsiriX 32-bit DICOM Viewer

参考文献

  1. Miranpuri, G. S., et al. Gene-based therapy of Parkinson's Disease: Translation from animal model to human clinical trial employing convection enhanced delivery. Annals of Neurosciences. 19, 133-146 (2012).
  2. Sillay, K., Hinchman, A., Akture, E., Salamat, S., Miranpuri, G., Williams, J., Berndt, D. Convection Enhanced Delivery to the Brain: Preparing for Gene Therapy and Protein Delivery to the Brain for Functional and Restorative Neurosurgery by Understanding Low-Flow Neurocatheter Infusions Using the Alaris® System Infusion Pump. Annals of Neurosciences. 20, (2013).
  3. Song, D. K., Lonser, R. R. Convection-enhanced delivery for the treatment of pediatric neurologic disorders. Journal of child neurology. 23, 1231-1237 (2008).
  4. Bobo, R. H., et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA. 91, 2076-2080 (1994).
  5. Debinski, W., Tatter, S. B. Convection-enhanced delivery for the treatment of brain tumors. Expert review of neurotherapeutics. 9, 1519-1527 (2009).
  6. Morrison, P. F., Laske, D. W., Bobo, H., Oldfield, E. H., Dedrick, R. L. High-flow microinfusion: tissue penetration and pharmacodynamics. The American journal of physiology. 266, 292-305 (1994).
  7. Nguyen, T. T., et al. Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. Journal of neurosurgery. 98, 584-590 (2003).
  8. Lonser, R. R., et al. Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion. Journal of neurosurgery. 97, 905-913 (2002).
  9. Raghavan, R., et al. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus. 20, (2006).
  10. Sillay, K., et al. Benchmarking the ERG valve tip and MRI Interventions Smart Flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease. Journal of neural engineering. 9, (2012).
  11. Schomberg, D., Wang, A., Marshall, H., Sillay, K., Miranpuri, G. Ramped-Rate vs. continuous rate infusions: An in vitro comparison of Convection Enhanced Delivery protocols. Annals of Neurosciences. 20, (2013).
  12. Sillay, K. A., et al. Perioperative Brain Shift and Deep Brain Stimulating Electrode Deformation Analysis: Implications for rigid and non-rigid devices. Ann Biomed Eng. 41, 293-304 (2013).
  13. Brodsky, E., Block, W., Alexander, A., Emborg, M., Ross, C., Sillay, K. Intraoperative Device Targeting using Real-Time MRI. Biomedical Sciences and Engineering Conference, BSEC. , (2011).
  14. Sillay, K., et al. Strategies for the delivery of multiple collinear infusion clouds in convection-enhanced delivery in the treatment of Parkinson's disease. Stereotactic and functional neurosurgery. 91, 153-161 (2013).
  15. Brady, M. L., et al. Pathways of infusate loss during convection-enhanced delivery into the putamen nucleus. Stereotactic and functional neurosurgery. 91, 69-78 (2013).
  16. White, E., et al. An evaluation of the relationships between catheter design and tissue mechanics in achieving high-flow convection-enhanced delivery. J Neurosci Methods. 199, 87-97 (2011).
  17. Fiandaca, M. S., Forsayeth, J. R., Dickinson, P. J., Bankiewicz, K. S. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 5, 123-127 (2008).
  18. Jagannathan, J., Walbridge, S., Butman, J. A., Oldfield, E. H., Lonser, R. R. Effect of ependymal and pial surfaces on convection-enhanced delivery. Journal of neurosurgery. 109, 547-552 (2008).
  19. Chen, Z. J., Broaddus, W. C., Viswanathan, R. R., Raghavan, R., Gillies, G. T. Intraparenchymal drug delivery via positive-pressure infusion: experimental and modeling studies of poroelasticity in brain phantom gels. IEEE transactions on bio-medical engineering. 49, 85-96 (2002).
  20. Chen, Z. J., et al. A realistic brain tissue phantom for intraparenchymal infusion studies. Journal of neurosurgery. 101, 314-322 (2004).
  21. Richardson, R. M., et al. Interventional MRI-guided Putaminal Delivery of AAV2-GDNF for a Planned Clinical Trial in Parkinson's Disease. Mol Ther. 19, 1048-1057 (2011).
  22. Thorne, R. G., Hrabetova, S., Nicholson, C. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. Journal of neurophysiology. 92, 3471-3481 (2004).
  23. Panse, S. J., Fillmore, H. L., Chen, Z. J., Gillies, G. T., Broaddus, W. C. A novel coaxial tube catheter for central nervous system infusions: performance characteristics in brain phantom gel. J Med Eng Technol. 35, 408-414 (2010).
  24. Linninger, A. A., Somayaji, M. R., Zhang, L., Smitha Hariharan, M., Penn, R. D. Rigorous mathematical modeling techniques for optimal delivery of macromolecules to the brain. IEEE transactions on bio-medical engineering. 55, 2303-2313 (2008).
  25. Sampson, J. H., et al. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-oncology. 9, 343-353 (2007).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

87 VD VI MRI

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。