需要订阅 JoVE 才能查看此. 登录或开始免费试用。
Method Article
Parametric optomechanical excitations have recently been experimentally demonstrated in microfluidic optomechanical resonators by means of optical radiation pressure and stimulated Brillouin scattering. This paper describes the fabrication of these microfluidic resonators along with methodologies for generating and verifying optomechanical oscillations.
腔光学机械的参夫妇的声子模式和光子方式已在各种光学系统包括微谐振器的实验研究。因为在光机械设备的直接液浸的增加声辐射损失然而,几乎所有出版的光学机械实验在固相被执行。本文讨论了一种新近推出的空心微流控光学机械谐振器。详细方法是提供给制造这些超高Q值微谐振器,光学机械进行测试,并测量辐射压驱动的呼吸模式和SBS驱动的回音壁模式的参数振动。通过限制毛细管谐振器内的液体,高的机械和光学质量的因素,同时维持。
腔光学机械研究声子模式和光子模式之间的微谐振器的辐射压力(RP)1-3手段的参数耦合和受激布里渊散射(SBS)4-6。 SBS和RP的机制已被证实在许多不同的光学系统中,如纤维7,微球4,6,8,磁环1,9和结晶谐振器5,10。通过这个光子-声子耦合,既冷却11和机械模的激发6,10已被证实。然而,几乎所有报告的光学机械实验与物质的固相。这是因为,光机械设备的结果大大增加了辐射声损耗,因为液体的高阻抗的直接液浸比较针对气。另外,在某些情况下,在液体中的耗散损失的机制可能会超出辐射声损耗。
Řecently,具有微细几何形状的新型中空光机械振荡器被引入12-15,并且其由设计配备用于微流体实验。该毛细管的直径沿其长度的调制,以形成多个“瓶谐振器”,能同时局限于光学回音壁共振16以及机械谐振模式17。机械共振模式的多个家庭参加,包括呼吸模式,酒杯模式和回音壁声学模式。酒玻璃(驻波)和回音壁声学(行波)时,与声波长的整数倍时的振动发生装置圆周共振形成的。光渐逝耦合到这些'瓶子'由锥形光纤18的方式的光学回音壁模式。禁闭里面19,20毛细管谐振器中的液体,如相对于外面,使高机械和光学质量的因素同时,它允许机械模式的光激发双方的RP和SBS的手段。如已经显示出,这些机械激励能够渗透入流体的装置12,13内,形成了一个共享固液共振模式,从而使光电机械接口内的流体环境。
在本文中,我们描述了制造,RP和SBS的驱动,和有代表性的测量结果这种新颖的光学机械系统。还提供特定的材料和工具清单。
1,制作超高Q值微流控谐振器的
2,对于光机检测实验装置
3,测量光机械振动
用这种方法生产的毛细管是薄(30微米和200微米之间),清楚,并且非常灵活,但足够坚固,可直接处理。它以防止灰尘和水(湿气)的毛细管装置的外表面,以保持高光学品质因数(Q)是重要的。通过浸渍在水中的毛细管的一端,并通过毛细管由注射器装置吹入空气,它可以验证所述毛细管是否通过或在制造过程中是否被封锁了由于过热。
可调谐激光器可用于通过锥形光?...
我们已经制作并测试通过采用高Q值的光学共振激发(和查询)机械振动腔光学机械和微流体之间的桥梁的新设备。令人惊讶的是多重激励机制,可在同样的设备,它有多种生成速率跨越2 MHz至11,300 MHz的机械振动模式。离心式辐射压力支持酒杯模式和呼吸模式在2-200 MHz跨度,正向受激布里渊散射允许在50-1,500 MHz范围内的机械回音壁模式,最后,落后的受激布里渊散射激发机械回音壁模式近11,000 MHz?...
We have nothing to disclose.
This work was funded by Startup funding from the University of Illinois at Urbana-Champaign, DARPA ORCHID program through a grant from AFOSR, the National Science Foundation through grant CMMI-1265164, and the National Science Foundation Graduate Research Fellowship program. We acknowledge enlightening discussions with Prof. Jack Harris, Prof. Pierre Meystre, Dr. Matt Eichenfield, Prof. Taher Saif, and Prof. Rashid Bashir.
Name | Company | Catalog Number | Comments |
Tunable IR laser | Newfocus | TLB-6328 | |
Photodetectors | Newfocus | 1811-FC (Low speed 125MHz) / 1611-FC-AC (High speed 1GHz) | |
Optical fiber | Corning | SMF28 | |
Silica capillary | PolyMicro | TSP700850 | |
10.6 um wavelength CO2 laser | Synrad | 48-1KWM and 48-2KWM | |
UV-curing optical adhesive | Thorlabs | NOA81 | |
Tubing | Tygon | EW-06418-01 | |
Syringes | B-D | YO-07940-12 | |
Needles | Weller | KDS201P | |
Electrical spectrum analyzer | Agilent Technologies | N9010A (EXA Signal Analyzer) | |
Electrical spectrum analyzer | Tektronix | 6114A (RSA, Real-time spectrum analyzer) | |
Optical spectrum analyzer | Advantest | Q8384 | |
Oscilloscope | Tektronix | DPO 4104B-L | |
Gold mirrors | II-VI Infrared | 836627 | |
Linear stage (slow) | DryLin | H1W1150 | |
Linear stage (fast) | PBC Linear | MTB055D-0902-14F12 | |
Fabry Perot optical spectrum analyser | Thorlabs | SA 200-14A (FSR: 1.5 GHz) |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。