Method Article
We describe methods for longitudinal monitoring of the efficacy of therapeutics for the treatment of colonic pathologies in mice using a rigid endoscope. This protocol can be readily used for the characterization of the therapeutic response of an individual tumor in live mice and also for monitoring potential disease relapse.
Animal models of inflammatory bowel disease (IBD) and colorectal cancer (CRC) have provided significant insight into the cell intrinsic and extrinsic mechanisms that contribute to the onset and progression of intestinal diseases. The identification of new molecules that promote these pathologies has led to a flurry of activity focused on the development of potential new therapies to inhibit their function. As a result, various pre-clinical mouse models with an intact immune system and stromal microenvironment are now heavily used. Here we describe three experimental protocols to test the efficacy of new therapeutics in pre-clinical models of (1) acute mucosal damage, (2) chronic colitis and/or colitis-associated colon cancer, and (3) sporadic colorectal cancer. We also outline procedures for serial endoscopic examination that can be used to document the therapeutic response of an individual tumor and to monitor the health of individual mice. These protocols provide complementary experimental platforms to test the effectiveness of therapeutic compounds shown to be well tolerated by mice.
结肠直肠癌(CRC)是恶性全世界1的4 个最常见的原因。尽管我们对这个疾病的家族基础上的理解显著的进步,遗传易感性不仅有助于对CRC的情况下2〜20%。其余都归因于大量的外在因素和环境因素,包括慢性炎症。在人类中,慢性炎症和结肠直肠癌之间的关联是溃疡性结肠炎(UC)的患者,谁具有显影结肠炎相关结肠癌(CAC)的更大的风险明显,取决于炎性疾病3的持续时间,程度和严重性-5。因此,新的治疗方法是在发展中,以控制的免疫反应和相关的生产的生长促进因子的炎症肿瘤微环境6-8。有适当的临床前动物模型中增加的需求来表征的治疗功效这些药物对发育和疾病的进展。
小鼠模型已经明确证实,炎性微环境有助于CRC进展,即使在没有明显的炎症9,10。这些模型包括使用多糖葡聚糖硫酸钠(DSS)的,在小鼠的饮用水提供到上皮损伤和急性和慢性炎性肠疾病(IBD)的11,12建模。虽然通过该DSS诱导粘膜损伤和结肠炎的机理还不完全清楚,一些研究表明,DSS抑制细胞的逆转录酶和核糖核酸酶活动的细胞内,或促进纳米脂质复合物,与结肠膜导致上皮损伤熔合形成13,14。修改标准DSS的模型还提供显著洞察由结肠上皮细胞维持组织稳态和单组机制晚黏膜免疫反应15。
氧化偶氮甲烷(AOM)的腹腔内给药单独,或与DSS的结合,提供了一个模式用于检查的体细胞突变之间的相互作用,在上皮粘膜和炎症和基质微环境16,17。 AOM是致癌物质1,2-二甲基肼(DMH)不直接导致DNA突变的代谢物。相反,AOM水解methylazoxymethanol(MAM)由细胞色素异构体CYP2E1在肝脏,在那里MAM缀合有葡糖醛酸,然后通过胆汁分泌物18输送到肠。据认为,该细菌β葡糖醛酸酶有助于MAM造成DNA烷基化的降解和突变的上皮细胞19的积累。大多数的AOM诱导的结肠肿瘤窝藏错义突变的基因中的编码β连环蛋白,渲染蛋白耐蛋白酶degradati上,这会导致经典Wnt信号通路20的异常活化。当AOM的活性是结合由DSS诱发的粘膜损伤,随后的伤口愈合反应创建一个微环境有利于的诱变上皮的生长和扩增。在此模型中的一个变型中,AOM的单独一段数周重复给药可用于模拟散发性结直肠癌,在没有DSS诱导的结肠炎的10,17。这两种模式的免费提供实验设置分别进行研究的CAC和零星的CRC,这两者都与一个促炎症肿瘤微环境10相关联。
利用小鼠序列内窥镜是由贝克尔和他的同事21首创,并允许结肠炎和肿瘤进展的纵向监测。在这里,我们提供了三个临床前的协议的基础上DSS诱发的粘膜损伤和/或AOM介导的涂铁道部感应可重复诱导特异性结肠病变。第一个协议描述诱发急性胃黏膜损伤响应DSS管理引发许多与IBD相关的病理特点。所述第二协议是基于DSS给药三个连续的周期,以模仿炎症在IBD患者中观察到的耀斑,并且可以进行结合AOM诱导突变。最终的协议是基于AOM诱导零星上皮突变。对于每一个这些协议中,我们在相关标准程序展开以包括我们已经开发并监控的新药物的疗效的预防和治疗性干预的方法。
医学研究动物伦理委员会的沃尔特伊丽莎研究所厅批准每一个在这些协议中描述的过程。
1.准备实验小鼠
2,临床前试验中的上皮损伤和急性结肠炎型号
3.临床前试验在慢性结肠炎或结肠炎相关的癌症模型
4.临床前试验的散发性结直肠癌型号
6.疾病评分
瘦身用作标准参数以监视与结肠炎,这是经常用于监测小鼠的总体健康相关的疾病。动物一般保持自己的体重,而DSS-含有水的管理,只有开始减肥瘦身的时候都恢复正常饮水。可接受的减肥参数应建立符合该机构的动物伦理委员会。为了防止与长期腹泻相关的脱水,使用例行提供醪(食物颗粒磨碎并与饮用水混合),补充有除了正常饮用水的蛋白质抖动。
作为替代麻醉,氯胺酮/赛拉嗪或类似试剂都可以使用,如果异氟烷设备不可用。由于内窥镜的刚性性质,这些过程只允许的最远端3厘米的小鼠结肠的可视化。新的内窥镜用额外的功能(包括柔性和荧光)可根据实验的需要。然而,由于决策支持系统的有害作用主要限于小鼠的远端结肠,用较温和的病理学在中间结肠观察到的,硬性内窥镜不妨碍监测个体小鼠的粘膜健康。虽然我们描述了一个协议,用于预防治疗急性DSS诱发结肠炎,这个协议可以很容易地修改,以测试干预治疗策略。旨在减轻上皮损伤和结肠炎的药物的功效可以在个体小鼠纵向进行监测,并根据所描述的评分参数( 图5)定量。这是有利的,在传统的实验设计,其中实验方案中所需要的小鼠在特定时间点的剔除,而不允许该疾病响应于治疗随时间的表征。
吨">在人体临床研究已经强调了在肿瘤如何不同的个体患者响应处理相当大的变化。在此处所描述的程序,提供给监控总体肿瘤负荷,以及个别肿瘤在过程中治疗响应的装置的实验,以考虑所概述的癌症模型中的干预协议不考虑到肿瘤发生疗法的效果,这是很重要的。预防性协议,与之前当肿瘤变得内镜可见提供了治疗,需要获得此信息。这里概述的协议提供上的上进展的治疗作用的信息从个人肿瘤(肿瘤大小测量)。肿瘤消退,也可以通过在可见的肿瘤数量的减少来表示。G"/>
图1:监视预防性治疗疗法的疗效的急性结肠损伤模型中的实验方案(一)需要8天,从开始到完成。治疗从第1天服用(二)预防性治疗。 DSS是在饮用水(c)从所述的实验方案的第3天提供的。内窥镜进行(D)监测动物的疾病进展。建议的时间点包括第0天(未处理)和第2天(健康监控),5日和8(以确定疾病负担)。在实验终止8.日(e)该早晨在野生型小鼠(F)的疾病的增加随着时间的进展。
图2:监控介入治疗的疗效模型Ø˚F结肠炎相关癌症的实验方案(一)需要72天从开始到结束。治疗剂(b)的从46天给予小鼠与已建立的肿瘤干预治疗。 AOM(c)的注入在第1天,和DSS设置在饮用水过度的实验方案的三个周期的过程中,开始在8内窥镜(d)中进行监测,动物的疾病进展日。建议时间点包括第0天(未处理),第20天(健康监控),和40天(至动物组根据肿瘤负荷)。内窥镜进行每周在治疗的过程中,以监测疾病的结果。实验(五)终止72日上午在野生型小鼠(六)肿瘤负荷增加,从40日起实施。
图3:监测介入治疗的疗效的自发结直肠癌模型中的实验方案(一),需要>50周从开始到完成。治疗剂(b)的施用给小鼠已建立的肿瘤干预治疗。 AOM(c)的注入在第1天,此后,连续6周注射在实验方案的过程中。内镜(d)中进行监测,动物的疾病进展。建议的时间点包括第0天(未处理)和第8周(肿瘤监测)和双周有后(建立肿瘤负荷)。内窥镜进行每周以上治疗过程中监测治疗结果。在实验(e)的终止在周50.在野生型小鼠(F)的肿瘤负荷增加从40周开始。 P>
图4:设备建立的实验设置(a)在所述内窥镜部,与单件设备的指示。的硬性内窥镜(b)中 ,与个别组分表示。比例尺= 2.5公分。 请点击此处查看该图的放大版本。
图5:得分病参数经胃镜大纲(一)鼠内镜结肠炎严重程度(MEICS)指数。个别肿瘤得分参数的大纲(二)。ES / ftp_upload / 52383 / 52383fig5highres.jpg"目标="_空白">点击此处查看该图的放大版本。
图6:代表理疗服务代表减肥,内窥镜图像和分数为:(一)急性DSS诱导粘膜损伤(二)肿瘤,发达国家继AOM / DSS协议(三)肿瘤的发展遵循的顺序。 AOM协议。 N = 3只小鼠每组。 * P <0.05,*** P <0.001(学生t检验)。 请点击此处查看该图的放大版本。
The three protocols that are described outline methods of reliable and reproducible induction of colonic disease pathology in mice. When combined with routine endoscopic monitoring and the intervention strategies outlined here, these protocols will provide powerful pre-clinical insight into the efficacy of therapeutics. Our laboratories routinely use all of these protocols to monitor the success of novel therapeutics10,23,24.
There are a number of considerations when choosing a pre-clinical animal model to test new therapeutics. These include relevance of the model to the human disease, and the contribution of the tumor microenvironment to the proposed action of the therapeutic target. Here we provide three protocols for therapeutic intervention in established intestinal disease models. These models are reproducible and the delivery of reagents to induce disease is easy to manage. Importantly, the models are highly relevant to multiple facets and stages of colitis onset, and of tumor initiation and progression. Researchers should take into consideration the genetic background of the mouse strains used when designing experiments, as the susceptibility to disease induced by DSS and/or AOM can vary considerably25. In addition, different microbial communities may have different metabolic capacities in the context of AOM, which is metabolized by bacteria. We caution against using different cohorts of mice that were born into different animal facilities (including commercial vendors) in a single experiment. Similarly, the different microflora in mice used from different facilities may elicit different host responses to DSS-induced epithelial barrier damage11. Moreover, the appropriate analysis of tissue (for example RNA purification) should also be considered, since the ability of DSS to inhibit reverse transcriptase will impact on subsequent molecular analysis26,27.
Mouse endoscopy is a cutting edge technique to repeatedly monitor disease onset and progression in an individual mouse. The ability to record videos and extract still images permits easy monitoring of multiple disease parameters and tumors. In addition to improving animal welfare, endoscopic monitoring also reduces the need for multiple cohorts of experimental mice, which traditionally were culled at different time-points to track disease outcome. The MEICS scoring system is not a substitute for histopathological analysis, but provides an alternative means to monitor animal health and mucosal damage in live mice. Mouse endoscopy is a specialized laboratory technique, and all procedures should be performed by trained personnel to ensure appropriate manipulation and handling of the mice, as well as to provide consistent quality in the images used for disease scoring. In the hands of qualified personal, we have found that endoscopy induces little or no damage to the tumors that would cause intra-tumoral bleeding. For the therapeutic protocols outlined, we consider endoscopy highly advantageous, since it provides a way to determine the initial tumor burden, and allows us to group cohorts of animals with similar tumor burdens prior to the administration of a therapeutic drug. Sequential monitoring of the mice enables researchers to determine the efficacy of novel therapies early on, with the option of terminating unsuccessful experiments in a timely manner.
As our understanding of inflammatory bowel disease and colorectal cancers advance, new targets for therapy will be identified. Appropriate animal models will be integral to ensuring that the most promising new therapies are moved towards clinical trials.
The authors have nothing to disclose.
We would like to thank CSL Ltd. for supporting the purchase of the endoscopy equipment. The research in the laboratory of ME is supported by the Ludwig Institute for Cancer Research, and the laboratories of TP and ME are supported by the Victorian State Government Operational Infrastructure Support and the National Health and Medical Research Council of Australia. ME is an NHMRC Senior Research Fellow.
Name | Company | Catalog Number | Comments |
Dextran sulfate sodium (MW 36,000-50,000) | MP Biochemicals | 160110 | Requires batch testing. |
Azoxymethane | Sigma | A5486-100MG | Requires batch testing. |
Vanilla protein shake | N/A | N/A | Available from hospital pharmacies. |
Isoflurane | PPC | M60303 | This is a restricted reagent, which should be stored under lock and key. |
70% ethanol | N/A | N/A | Standard lab reagent. |
Coloview miniendoscopic system | |||
Endovision Tricam | Karl Storz | 20212001-020 | |
Xenon 175 light source with anti-fog pump | Karl Storz | 20134001 | |
HOPKINS straight Forward Telescope | Karl Storz | 64301AA | |
Endoscopic sheath (total diameter 3 mm) | Kalr Stroz | 61029C | |
Fiber optic light cable | Kalr Stroz | 69495ND | |
Computer and media player software | Apple | iMovie | |
Scale | Any | Any scale suitable for weighing mice. |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。