JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

We describe a detailed protocol using high-resolution episcopic microscopy to acquire three-dimensional (3D) images of mouse embryos. This improved protocol utilizes a modified tissue preparation method to enhance penetration of the fluorescent dye, thereby permitting morphometric analysis of both small and large-sized specimens.

摘要

High-resolution episcopic microscopic (HREM) technology enables rapid acquisition of high-resolution digital volumetric and three-dimensional (3D) morphometric data. Here, we describe the detailed protocol to image the entire mouse embryo. The protocol consists of four major sections: sample preparation, embedding, image acquisition and finally, 3D visualization. The technology requires specimens to be stained with a fluorescent dye, which can be problematic for large or dense specimens. To overcome this limitation, we have improved the existing protocol to enhance tissue penetration of the dye by pretreating the specimen with a solution containing urea and sodium dodecyl sulfate. The protocol uses only routine laboratory equipment and reagents for easy adaptation in standard laboratory settings. We show that the resulting high-resolution 3D images faithfully recapitulate the detailed morphologic features of the internal organs of mouse embryos, thereby permitting morphometric analyses. Together, we present a detailed and improved protocol using standard laboratory equipment to acquire high-resolution 3D images of small and large sized specimens.

引言

The advent of 3D imaging technologies has opened the possibility of systemic analysis of detailed morphological features during fetal development. A variety of 3D imaging modalities is now available include micro-magnetic resonance imaging (micro-MRI), micro computed tomography, high frequency ultrasound, optical coherence tomography, optical project tomography and episcopic microscopy1-4. Each modality has its own unique features in resolution, contrast, speed, cost, in utero capability and availability.

Episcopic fluorescence image capture (EFIC) and high-resolution episcopic microscopy (HREM) are episcopic microscopy imaging methods4. Here, high-resolution serial images are captured continuously from the block face instead of tissue sections. The resulting images faithfully reflect detailed morphological features with minimal or no tissue distortion. The acquired volumetric data is readily converted to high-resolution 3-D images suitable for accurate morphometric analysis. Because of relative low cost and high resolution, HREM and EPIC have become the superior alternatives for systemic assessment of mouse models of human birth defects2,4-8.

Both EFIC and HREM methods require specimens to be embedded in the suitable medium. EFIC detects autofluorescence emitted from the embedded tissue. Because of this, it is limited to specimens emitting high levels of autofluorescence but not those with relatively weak autofluorescence such as early stage embryos9. To overcome the dependency of autofluorescence, specimens are stained with a fluorescent dye such as eosin for HREM imaging. The choices of dyes and staining methods also make HREM more compatible to detect molecular signals in the context of tissue architecture and morphology4,10.

In this article, we present an improved HREM protocol suitable for whole body assessment of the late stage mouse embryos. To facilitate staining, we include a pretreatment step to increase tissue penetration, thereby enabling HREM imaging of older mouse embryos.

Access restricted. Please log in or start a trial to view this content.

研究方案

所有的动物用途被机构动物护理和使用委员会在波士顿儿童医院的批准。

1.样品制备

  1. 定时交配
    1. 在同一个笼子里放置一个C57BL6野生型男性和女性在一起。
    2. 检查第二天一早形成了交配塞。交配塞( 又名 ,阴道或交配插头)是硬化胶质沉积,阻止阴道。
    3. 设置插件日期作为胚胎天0.5(E0.5)。
  2. 小鼠胚胎的隔离
    1. 通过CO 2窒息安乐死怀孕女性。
    2. 把小鼠仰卧上的吸收垫,并用70%乙醇喷雾腹部区域。
    3. 提起皮肤,并用在手术剪尾腹部开始5毫米的切口。剪切和去除腹部皮肤充分暴露内脏
    4. 附近的弗吉尼亚州切吉娜切除整个子宫。
    5. 沿角子宫着床点之间切割。每个段或孕应该有内部只有一个胚胎。
    6. 保持在1×冰冷的磷酸盐缓冲盐水(PBS)子宫段。
  3. 胚胎解剖
    1. 将每个孕在冰冷的PBS立视下一个单独的菜。
    2. 取出子宫组织,胎盘,然后胎膜依次用细镊子解剖。
    3. 转移解剖胚胎至50ml管中使用的大移液管1×冰冷的PBS。避免直接用钳子拿起胚胎,以尽量减少组织损伤。
  4. 固定术
    1. 固定在10%中性缓冲福尔马林溶液中的解剖胚胎在4℃下超过24小时,用固定剂中的至少10样品体积。
  5. 预处理
    1. 准备结算解决方案:48M尿素,10%甘油,4%十二烷基硫酸钠(SDS),在双蒸水。
    2. 更换清算解决方案的固定液。
    3. 2个星期 - 在室温下为1轻轻转动上的摇杆试样。交易所结算解决方案,一旦在第二和第三天。试样慢慢变得清澈透亮。
    4. 用10%福尔马林更换结算解决方案和摇杆离开2天。
  6. 脱水
    1. 用1×PBS洗涤预处理样品3次,每次5分钟。
    2. 脱水在室温下递增乙醇系列上的平缓摇杆样品。为E15.5胚胎中,使用递增的乙醇系列包括50%,60%,70%,80%,85%,90%,95%和100%的乙醇,2小时的每个步骤。对年龄较大的胚胎,培养时间需要增加。
  7. 染色
    1. 准备染色液:补充0.1375克曙红Y二钠盐和0.0275克吖啶橙半(氯化锌)盐至50ml的100%乙醇的。搅拌2小时。用滤纸过滤。在室温下储存,并通过用铝箔覆盖避光。
    2. 传送标本的染色溶液1小时。
    3. 用新鲜的染色液和染色一夜之间更换。
  8. 浸润
    1. 准备渗透解决方案:结合百毫升JB-4包埋试剂盒的溶液A,1.25克催化剂的C,0.275克曙红Y钠盐和0.055克吖啶橙半(氯化锌)盐。搅拌混合(200rpm)下,在冰桶2小时,然后用滤纸进行过滤。
    2. 存放在4℃的渗透解决方案,并通过与铝箔覆盖避光。
    3. 胚胎转移到渗透液:染色溶液(1:1),并在4℃孵育至少3小时在摇杆。
    4. 胚胎转移到渗透解决方案,并培育3小时R ON在寒冷的房间摇杆。
    5. 每天更换一次渗透溶液,并在冷室中留下一个温和摇杆为三天。

2.嵌入

  1. 保持解决方案B和渗透液冰上。
  2. 立即嵌入之前,请嵌入(溶液B和渗透液1:25)。
  3. 东方在嵌入模具样品,然后轻轻地泼冷水解决方案嵌入到嵌入模具。重新定向,如果需要用的销。
  4. 使用PIN检查嵌入解决方案是否凝固。压出试样块,如果需要修剪。
  5. 使用单独的模具来获得的横方向重新定向试样块。
  6. 把块托架上嵌入模具的顶部。轻轻倾嵌入解到模具直到模具和块保持器被嵌入溶液淹没。
  7. 保持试样在次级容器并​​使其保持在冰上3 - 在通风橱4小时。
  8. 储存在4℃的固化试样。
  9. 剥去嵌入模具。放块中的体视显微镜下的斜光来检查在块中的样本的位置。在块面,标志网格线的样品周围。
  10. 修剪块删除使用标记网格线作为参考包埋材料的访问量。

3.图像采集

  1. 夹紧标本块切片机,并获取新的切割面。设置切片厚度( e9.5-10.5,1.5微米; e11.5-12.5,2.0微米; e13.5-15.5,2.5微米; E16.5-年纪大了,3微米)。保持试样/块在切片机的位置。
  2. 安装立体变倍显微镜水平面临着样本的块面。
  3. 打开计算机和显微镜,并启动图像采集软件。
  4. 可视化和聚焦光学器件的块面在成像软件的"实时取景"模式。
  5. 如果需要的话,这样的块面是在取景器中央对准显微镜和切片机。
  6. 调整变焦,以使整个块面是在取景器内。
  7. 选择绿色荧光蛋白(GFP)的过滤器(激发470±20纳米,分色495纳米,发射525±25纳米),如果需要的话重新聚焦。
  8. 测量和手动设置曝光时间例如 80 - 400迷你秒)。
  9. 获得块面的图像中的每个鲜切后,如果可能,会自动保存图像。
  10. 包括分辨率,截面厚度和变焦记录的重要参数。
  11. 完成整个标本,出口和在必要时所有的图像文件转换为JPEG格式之后。
  12. 倒置使用成像处理软件的所有原始图像,并调整亮度和对比度。
  13. 保存所有在一个单独的文件夹中处理图像。

4. 3D可视化

  1. 上传所有按照指示处理过的图像,三维可视化软件。
  2. 输入分辨率和截面厚度把所有图像容积数据( 即,像素的大小),并保存3D文件。
  3. 对齐使用自动模式下,所有的图像。如有必要,手动调整个别图像。
  4. 对齐图像保存到一个新的文件名。
  5. 分析使用三维可视化软件试样的形态特征。

Access restricted. Please log in or start a trial to view this content.

结果

我们曾报道E9.5和E13.5 8之间的小鼠胚胎的高品质图像HREM。后期阶段胚的图像质量,然而,显著因为荧光染料曙红的有限的组织穿透的损害。为了提高效率,染色,我们测试的是荧光成像兼容11多种预处理方法。具体来说,E15.5小鼠胚胎,用任何的Sca / E A2 12或全身CUBIC 13处理。我们也测试了简化公式,清算溶液(4M尿素,10%甘油,4%十二烷?...

Access restricted. Please log in or start a trial to view this content.

讨论

这里,我们目前用常规的实验室设备收购是快速三维可视化和复杂结构的形态分析兼容串行高分辨图像的修改协议。由于高分辨率图像被从块面,而不是各个部分直接被使用,则细形态特征被保留,并迅速在3D可视化程序数字重建。

3D成像形象化和了解复杂的形态特征提供了显著的优势。大多数3D成像技术依赖于专门的设备1-4。与此相反,EFIC和高分辨成像只利用标准?...

Access restricted. Please log in or start a trial to view this content.

披露声明

The authors have nothing to disclose.

致谢

We thank Drs. Yichen Huang, Chunming Guo and Zhenfang Zhou for their technical support. This research was funded by NIH/NIDDK (1R01DK091645-01A1, XL) and American Heart Association (AHA, 13GRNT16950006, XL).

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
MiceThe Jackson LaboratoryC57BL6
Ethyl AlcoholPharmco-Aaper111000200200 Proof, Absolute, ACS/USP/Kosher Grade
FormalinSigmaHT501128-4L
UreaSigmaU5128Clearing Solution
GlycerolFisher scientificG33-4Clearing Solution
Sodium Dodecyl SulfateInvitrogen15525-017Clearing Solution
Eosin Y Disodium SaltFisher scientificBP241925Infiltration Solution
Acridine Orange hemi (zinc chloride) saltSigmaA6014Infiltration Solution
Whatman paperGE3030-153
JB-4 Embedding Kit - Solution APolysciences, Inc.0226A-800Infiltration Solution
JB-4 Embedding Kit - Solution BPolysciences, Inc.0226B-30Embedding Solution
JB-4 Embedding Kit - CatalystPolysciences, Inc.02618-12Infiltration Solution
Embedding MoldsPolysciences, Inc.23185-116 x 8 mm
Peel-A-Way Sharp Embedding MoldsPolysciences, Inc.18986-122 mm x 22 mm square, truncated to 12 mm x 12 mm
JB-4 Plastic Block HoldersPolysciences, Inc.15899
Disposable Graduated Transfer PipesVWR414004-014
Petrl DishVWR25384-088Embryo dissection
Forceps Inox Tip ROBOZRS-5015Embryo dissection
Graefe Tissue Forcep ROBOZRS-5153Embryo dissection
Delicate Operating Scissor ROBOZRS-6700Embryo dissection
14 ml Polypropylene Round-Bottom TubesFalcon352059
50 ml Polypropylene Conical TubesFalcon352098
Ice BucketMagic Touch Iceware International Corp.R19-343
100 ml (3.4 oz.) Antistatic Polystyrene Weigh BoatsVWR89106-766
330 ml (11.2 oz.) Antistatic Polystyrene Weigh BoatsVWR89106-770
Sodium ChlorideMP Biomedicals102892PBS Solution
Potassium ChlorideSigmaP0662PBS Solution
Potassium phosphate monobasicSigmaP5405PBS Solution
Sodium phosphate dibasic heptahydrateSigma-AldrichS9390PBS Solution
Digital CameraHamamatsu PhotonicsC11440-10C
MicrotomeLeicaRM2265
IlluminatorCarl ZeissHXP 200C
Fluorescence Stereo Zoom MicroscopeCarl ZeissAxio Zoom.V16
Stereo MicroscopeOlympusSZX16
Fiber Optic Light SourceLeicaKL 1500 LCD
Disposable Microtome BladeVWR95057-832
Single Edge DispenserPersonna62-0330-0000
ZENCarl Zeisspro 2012
PhotoshopAdobeCS6 v13.0
Amira 3D SoftwareVisage Imaging5.4
ComputerDell T7600, 2x900GB SAS hard drive and 64 GB DDR3 RDIMM memory
Rocking Platform ShakersVWR40000-304
Standard Hot Plate StirrerVWR12365-382
Analytical BalanceMettler ToledoAB54-S

参考文献

  1. Gregg, C. L., Butcher, J. T. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation. 84, 149-162 (2012).
  2. Liu, X., Tobita, K., Francis, R. J., Lo, C. W. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. Birth defects Res C. 99, 93-105 (2013).
  3. Norris, F. C., et al. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet. 29, 700-711 (2013).
  4. Weninger, W. J., et al. Phenotyping structural abnormalities in mouse embryos using high-resolution episcopic microscopy. Dis model mech. 7, 1143-1152 (2014).
  5. Mohun, T. J., Weninger, W. J. Episcopic three-dimensional imaging of embryos. Cold Spring Harb protoc. , 641-646 (2012).
  6. Sizarov, A., et al. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J Anat. 220, 336-349 (2012).
  7. Anderson, R. H., et al. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res. 95, 108-115 (2012).
  8. Huang, Y. C., Chen, F., Li, X. Clarification of mammalian cloacal morphogenesis using high-resolution episcopic microscopy. Dev Biol. 409, 106-113 (2016).
  9. Mohun, T. J., Weninger, W. J. Embedding embryos for episcopic fluorescence image capturing (EFIC). Cold Spring Harb protoc. , 675-677 (2012).
  10. Weninger, W. J., Mohun, T. J. Three-dimensional analysis of molecular signals with episcopic imaging techniques. Methods mol biol. 411, 35-46 (2007).
  11. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162, 246-257 (2015).
  12. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 14, 1481-1488 (2011).
  13. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157, 726-739 (2014).
  14. Mohun, T. J., Weninger, W. J. Generation of volume data by episcopic three-dimensional imaging of embryos. Cold Spring Harb protoc. , 681-682 (2012).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

117 HREM EFIC

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。