JoVE Logo

登录

本文内容

  • 摘要
  • 研究方案
  • 披露声明
  • 参考文献
  • 转载和许可

摘要

A correction was made to Reconstitution Of β-catenin Degradation In Xenopus Egg Extract. At the time of publication there were some instances where an incorrect volume notation was used. These instances were corrected from:

2.1.2. Add extract to 1/10 the volume of pelleted antibody or affinity beads (e.g., 20 ml pelleted beads to 200 ml extract). In order to minimize dilution of the extract, withdraw as much liquid from the beads as possible before addition of the extract using gel loading tips with long, tapered tips.

2.2.5. Aliquot the appropriate volumes for degradation assay into pre-chilled microfuge tubes on ice. For radiolabeled β-catenin degradation assays, withdraw 2-5 ml extract for each time point.

3.2.3. At the designated time point, remove 1-5 ml of the sample and mix immediately with SDS sample buffer (5x volume) to stop the reaction. To make sure the degradation reaction is completely terminated, flick tube several times and vortex vigorously.

3.2.4. Perform SDS-PAGE/autoradiography. Run 1 ml equivalents (~50 mg of protein) of the extract for each time point/lane. Degradation of β-catenin in Xenopus egg extract should be evidenced by the time-dependent decrease in intensity of the radiolabeled β-catenin band Figure 2. Quantify results using ImageJ, ImageQuant, or other preferred imaging software if necessary.

4.2.2. Add in vitro-translated β-catenin-luciferase fusion (from 4.1) into prepared Xenopus reaction mix (from 2.2) on ice and mix well as in 3.2.1. NOTE: The activity of the β-catenin luciferase that is added to the extract is typically between 20 - 50,000 relative luminescence units (RLU)/ml of extract (based on measurements obtained from 4.1.2). Starting signal should be approximately 100,000 RLU (2-5 ml of the in vitro-translated β-catenin-luciferase fusion).

to:

2.1.2. Add extract to 1/10 the volume of pelleted antibody or affinity beads (e.g., 20 µl pelleted beads to 200 µl extract). In order to minimize dilution of the extract, withdraw as much liquid from the beads as possible before addition of the extract using gel loading tips with long, tapered tips.

2.2.5. Aliquot the appropriate volumes for degradation assay into pre-chilled microfuge tubes on ice. For radiolabeled β-catenin degradation assays, withdraw 2-5 µl extract for each time point.

3.2.3. At the designated time point, remove 1-5 µl of the sample and mix immediately with SDS sample buffer (5x volume) to stop the reaction. To make sure the degradation reaction is completely terminated, flick tube several times and vortex vigorously.

3.2.4. Perform SDS-PAGE/autoradiography. Run 1 µl equivalents (~50 mg of protein) of the extract for each time point/lane. Degradation of β-catenin in Xenopus egg extract should be evidenced by the time-dependent decrease in intensity of the radiolabeled β-catenin band Figure 2. Quantify results using ImageJ, ImageQuant, or other preferred imaging software if necessary.

4.2.2. Add in vitro-translated β-catenin-luciferase fusion (from 4.1) into prepared Xenopus reaction mix (from 2.2) on ice and mix well as in 3.2.1. NOTE: The activity of the β-catenin luciferase that is added to the extract is typically between 20 - 50,000 relative luminescence units (RLU)/µl of extract (based on measurements obtained from 4.1.2). Starting signal should be approximately 100,000 RLU (2-5 µl of the in vitro-translated β-catenin-luciferase fusion).

研究方案

A correction was made to Reconstitution Of β-catenin Degradation In Xenopus Egg Extract. At the time of publication there were some instances where an incorrect volume notation was used. These instances were corrected from:

2.1.2. Add extract to 1/10 the volume of pelleted antibody or affinity beads (e.g., 20 ml pelleted beads to 200 ml extract). In order to minimize dilution of the extract, withdraw as much liquid from the beads as possible before addition of the extract using gel loading tips with long, tapered tips.

2.2.5. Aliquot the appropriate volumes for degradation assay into pre-chilled microfuge tubes on ice. For radiolabeled β-catenin degradation assays, withdraw 2-5 ml extract for each time point.

3.2.3. At the designated time point, remove 1-5 ml of the sample and mix immediately with SDS sample buffer (5x volume) to stop the reaction. To make sure the degradation reaction is completely terminated, flick tube several times and vortex vigorously.

3.2.4. Perform SDS-PAGE/autoradiography. Run 1 ml equivalents (~50 mg of protein) of the extract for each time point/lane. Degradation of β-catenin in Xenopus egg extract should be evidenced by the time-dependent decrease in intensity of the radiolabeled β-catenin band Figure 2. Quantify results using ImageJ, ImageQuant, or other preferred imaging software if necessary.

4.2.2. Add in vitro-translated β-catenin-luciferase fusion (from 4.1) into prepared Xenopus reaction mix (from 2.2) on ice and mix well as in 3.2.1. NOTE: The activity of the β-catenin luciferase that is added to the extract is typically between 20 - 50,000 relative luminescence units (RLU)/ml of extract (based on measurements obtained from 4.1.2). Starting signal should be approximately 100,000 RLU (2-5 ml of the in vitro-translated β-catenin-luciferase fusion).

to:

2.1.2. Add extract to 1/10 the volume of pelleted antibody or affinity beads (e.g., 20 µl pelleted beads to 200 µl extract). In order to minimize dilution of the extract, withdraw as much liquid from the beads as possible before addition of the extract using gel loading tips with long, tapered tips.

2.2.5. Aliquot the appropriate volumes for degradation assay into pre-chilled microfuge tubes on ice. For radiolabeled β-catenin degradation assays, withdraw 2-5 µl extract for each time point.

3.2.3. At the designated time point, remove 1-5 µl of the sample and mix immediately with SDS sample buffer (5x volume) to stop the reaction. To make sure the degradation reaction is completely terminated, flick tube several times and vortex vigorously.

3.2.4. Perform SDS-PAGE/autoradiography. Run 1 µl equivalents (~50 mg of protein) of the extract for each time point/lane. Degradation of β-catenin in Xenopus egg extract should be evidenced by the time-dependent decrease in intensity of the radiolabeled β-catenin band Figure 2. Quantify results using ImageJ, ImageQuant, or other preferred imaging software if necessary.

4.2.2. Add in vitro-translated β-catenin-luciferase fusion (from 4.1) into prepared Xenopus reaction mix (from 2.2) on ice and mix well as in 3.2.1. NOTE: The activity of the β-catenin luciferase that is added to the extract is typically between 20 - 50,000 relative luminescence units (RLU)/µl of extract (based on measurements obtained from 4.1.2). Starting signal should be approximately 100,000 RLU (2-5 µl of the in vitro-translated β-catenin-luciferase fusion).

披露声明

No conflicts of interest declared.

参考文献

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可
JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。