JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文介绍了通过植物的血管组织在韧皮部 sap 喂养昆虫中进行 rna 干扰 (rna 干涉) 来口服双链 rna (dsRNA) 的新方法。

摘要

韧皮部和植物 sap 喂养昆虫侵入作物和水果的完整性, 以检索养分, 在过程中破坏粮食作物。Hemipteran 昆虫占了许多经济上大量的植物害虫, 它们在韧皮部汁液上喂食, 对农作物造成了损害。褐大理石纹蝽臭味虫 (BMSB) Halyomorpha 蝮蛇 (翅: 蝽) 和亚洲柑橘木虱 (非加太)、 Diaphorina 桔 Kuwayama (半翅目: Liviidae) 是北美洲引进的害虫, 在那里他们是一种具有高价值特产、排菜、主食作物和柑橘类水果的侵入性农业害虫, 在室内聚集时会造成害虫的危害。杀虫剂抗药性在许多种类导致了其他方法的虫害管理战略的发展。双链 rna (dsRNA) 介导的 rna 干涉 (rna 干扰) 是一种基因沉默机制的功能基因组研究, 具有潜在的应用工具, 以管理害虫。外部合成的 dsRNA 或小干扰 rna (siRNA) 可以通过降解内源 rna 而触发高效的基因沉默, 这与所提出的是同源的。利用 rna 干扰作为 hemipteran 昆虫生物防治的分子生物农药的有效和环境应用需要通过喂养来进行 dsRNAs 的体内传递. 在这里, 我们演示了向昆虫运送 dsRNA 的方法: 通过浸泡将 dsRNA 装入绿豆中, 通过摄取来吸收基因特异的 dsRNA 和口服分娩。我们还概述了非转基因植物提供方法使用叶面喷雾剂, 根淋, 树干注射以及粘土颗粒, 这一切可能是必不可少的持续释放 dsRNA。口服 dsRNA 有效的分娩是一种有效的剂量, 可以显著降低靶向基因的表达, 如青少年激素酸 O 型甲基 (JHAMT) 和卵黄蛋白原 (Vg)。这些创新方法代表了在作物保护中使用 dsRNA 的战略, 并克服了虫害管理方面的环境挑战。

引言

Hemipteran 昆虫包括一些最经济上重要的害虫, agriculturebecause 他们的能力, 以达到较高的人口增长和传播疾病的植物。BMSB, H. 蝮蛇Stål, 是一种侵入性害虫, 是在西半球的西伦敦, 从亚洲 (中国, 台湾, 韩国和日本) 意外引入的, 第一次目击报告在 1996年1。自介绍以来, 已在43个国家发现了 BMSB, 其中大西洋中部 (DE、马里兰州、PA、新泽西州、弗吉尼亚州和 WV) 以及加拿大和欧洲的人口最多, 对农业的潜在威胁是2。作为一种多食性害虫, BMSB 可能会对大约300种植物寄主造成伤害, 包括诸如苹果、葡萄、观赏植物、种子作物、大豆和玉米等高价值作物。损害主要是由于喂养方式被称为撕裂和冲洗, 动物刺穿宿主作物与它的针状鞘, 以获得从血管组织的营养物2,3。BMSB 也是一个室内害虫, 因为他们可能会发现居住地区, 如学校和房屋在秋季通过冬季2。据报道, BMSB 释放的化学物质和 aeroallergens 对水果作物工人的非法过敏反应。BMSB 也可能导致过敏性疾病导致接触皮炎, 结膜炎和鼻炎在敏感的个人4,5。另一 hemipteran 昆虫, 非加太,Kuwayama (半翅目: Liviidae), 是一种严重的柑橘类水果害虫, 并传送韧皮部有限的细菌 (Candidatus Liberibacter 胭脂) 导致黄龙 (HLB), 更好地知道作为柑橘绿化病害6,7。HLB 最初是从中国南方报告, 并已蔓延到40不同的亚洲, 非洲, 大洋洲, 南美和北美洲国家7。柑橘的绿色化是一个世界性的问题, 因柑橘果实的流失而造成经济和金融损失;因此, 对非加太的管理被认为是预防和控制 HLB 的最重要的。

有效控制这些害虫的措施通常需要使用相对短命的化学杀虫剂。化学杀虫剂控制战略往往缺乏安全的环境管理战略, 或降低了虫害的敏感性, 由于抗药性在害虫人口8,9。因此, 用分子生物农药对害虫进行生物控制是一种潜在的替代方法, 但它在全球的使用仍然是适度的, 而各种寄生昆虫 (例如、Trisolcus) 也可能作为天然生物而有效. 控制。rna 干扰是一种潜在的新兴技术, 用于管理侵入性害虫的分子生物农药 10.rna 干扰是一种很好描述的基因调控机制, 它促进了有效的转录后水平基因沉默和入侵 dsRNAs 以序列特定的方式, 最终导致调控基因表达在 mRNA级别11,12。简单地说, 当外源 dsRNA 被内化成细胞时, 它被二齿核酸酶 RNase III 超家族的成员加工成 siRNAs, 被称为 Dicer, 在蠕虫、苍蝇、植物、真菌和哺乳动物中进化保存13,14,15. 这21-25 核苷酸 siRNA 复式然后被解除和集成在 RNA 诱导的沉默综合体 (RISC) 作为指南 rna。这个 RISC-RNA 复合体允许沃森-克里克基配对的互补靶 mRNA;这最终导致分裂的 Argonaute 蛋白, 一个多域蛋白, 含有一个 RNase 的 H 样域, 降低相应的 mRNA 和减少蛋白质的翻译, 从而导致转录后水平基因沉默16,17,18

害虫管理的 rna 干扰需要引入 dsRNA体内来保持兴趣基因的沉默, 从而激活 siRNA 通路。各种方法, 已用于 dsRNA 提供给昆虫和昆虫细胞诱导系统的干扰包括喂养10,19, 浸泡20,21, 显微注射22, 载体, 如脂质体23和其他技术24。在秀丽线虫中首次显示了 rna 干扰, 以保持unc-22基因表达的火和梅洛25, 其次是在卷曲基因表达的果蝇26。初步功能研究利用显微注射在昆虫中提供 dsRNA, 如api 蜜蜂22,27, Acyrthosiphon 豌豆28,德国小蠊29,H. 蝮蛇30和鳞翅目昆虫 (由 Terenius et 等人审阅)31). 显微注射有利于对昆虫感兴趣的部位提供准确精确的剂量。尽管此类脓毒穿刺可能引起损伤的免疫相关基因的表达32, 因此, 排除其在农业生物农药发展的实用性。

另一种提供 dsRNA在体内的方法是浸泡, 它包括通常在含有 dsRNA 的胞外介质中悬浮动物或细胞来摄取或吸收 dsRNA。浸泡已被用来有效地诱导在果蝇S2 组织培养细胞中的 rna 干扰抑制 Downstream-of-Raf1 (DSOR1) 丝裂原活化蛋白激酶激酶 (MAPKK)20, 以及在C. 线虫沉默pos-1基因33。然而, 使用浸泡提供的 dsRNA 比微注射20更有效地诱导 rna 干扰。咀嚼昆虫中的干扰介导的沉默首先显示在西部玉米 rootworm (西铁) (Diabrotica virgifera virgifera) 通过注入 dsRNA 到一个人工琼脂饮食10。早先的报告总结了将 dsRNA 注入到节肢动物34特有的自然饮食中的方法。这些交付方法进一步被确定对人为交付手段是相对地有效的;如采舌蝇 (舌蝇 morsitansmorsitans) 的情况, 当 dsRNA 通过血餐或杏仁35传递时, 观察到与免疫相关的基因的同等击倒.同样, 通过在淡褐色苹果蛾 (Epiphyas postvittana)36, 小菜蛾 (小菜蛾) 幼虫37, 以及蜂蜜蜂38,39 dsRNA 通过水滴传递诱导有效的 rna 干扰。hemipteran 的大多数有效的 rna 干扰实验都利用了 dsRNA40的注入, 因为 hemipteran 昆虫 dsRNA 的口服分娩是艰巨的, 因为它必须通过宿主植物的血管组织来传递。在非加太和玻翅射手叶蝉 (GWSS)、 Homalodisca 金小蜂中也观察到有效的 rna 干扰: dsRNA 是通过通过根系淋湿吸收 dsRNA 到血管组织中的柑橘和葡萄藤提供的, 叶面喷淋, 树干注射, 或吸收通过扦插41,42,43,44,45,46。这也导致了第一个专利为 dsRNA 反对非加太 (2016, 美国 20170211082 A1)。使用载体, 如纳米粒子和脂质体传递 siRNA 和 dsRNA 提供稳定性, 并增加交付的 dsRNA 功效正在迅速涌现23,47,48,49 ,50。一种新型的基于纳米微粒的用于核酸的用于体外体内的载体, 它是专门用于治疗应用的, 可以作为合适的传递载体51提供巨大的潜能。纳米微粒作为 dsRNA 的运载工具可能有缺点, 包括溶解度, 疏水性, 或有限的生物积累52, 但适当的聚合物协助交付可能补偿这些缺点。开发和使用自我交付核苷酸也出现称为 "反义寡核苷酸", 这是单链 RNA/DNA 复式46

节肢动物卵黄是控制生殖的关键过程, 是由幼激素和昆虫蜕皮激素调节的, 是人体脂肪合成 Vg 的关键诱导剂;vg 最终被开发的卵母细胞通过 Vg 受体介导的吞53。Vg 是一组多肽合成的 extraovarially, 这是关键的发展的主要蛋黄蛋白, 卵黄蛋白 54, 55, 因此, 它是重要的繁殖和老化 56.vg 已成功地在线虫57以及蜂蜜蜂 (api 蜜蜂) 中被静音, 在成人和卵子22中观察到了 vg 的 rna 介导的损耗。rna 介导的转录后水平基因沉默是测试, 因为它被认为它的耗尽将导致一个可观察的表型效应, 如降低生育率和生育力, 以潜在的帮助 BMSB 控制。JHAMT 基因编码的 S-s-甘基-l-蛋氨酸 (SAM) 依赖的 jh 酸 O-甲基, 催化的最后一步, jh 生物合成途径 58.在这一途径中, 法尼基焦磷酸盐 (FPP) 依次由金合欢转化为 farnesoic 酸, 随后由 farnesoate 转化成甲基 JHAMT 为 JH。这种通路是保存在昆虫和节肢动物专门为蜕变, 这一进程是由荷尔蒙调节59,60,61。在B. 森中, JHAMT 基因表达和咽侧体的生物合成活动表明, 对JHAMT基因的转录抑制是对合成58终止的关键.因此, 使用 rna 干扰为目标损耗选择了JHAMTVg基因。在柑橘树上也进行了 rna 干扰试验, 以控制非加太和 GWSS。柑橘树通过根淋、茎龙头 (树干注射) 以及叶面喷剂与 dsRNAs 对昆虫特异精氨酸激酶 (AK) 转录的 dsRNA 处理42,44。dsRNA 的局部应用被发现在柑橘树的树冠上, 表明通过植物血管组织有效的传递, 并导致增加的死亡率在非加太和 GWSS41,42,45

在目前的研究中, 我们已经确定了一种自然的饮食提供方法, 如 dsRNA 的治疗。这种新开发的技术后来被用于沉默的 JHAMT 和 Vg mRNA 使用的基因特异 dsRNAs 在 BMSB 若虫如前所示的62。这里演示的这些新的交付协议取代了使用局部喷雾或 microinjections 的常规 RNA 传递系统。在 5月, 蔬菜和水果、茎秆、土壤淋湿和粘土吸收剂用于 dsRNA 的输送, 对生物农药害虫和病原体管理的持续发展至关重要。

研究方案

1. BMSB 饲养

  1. 后 BMSB 昆虫按标准实验室实践和以前描述的63
  2. 在温室 (22 摄氏度) 和自然光下, 在柑橘秦艽上加注非加太 (D. 桔) 昆虫。使用成人非加太, 在大约5-7 天后羽化。

2. 基因区域的选择和体外合成 dsRNA

  1. 从以前发布的转录配置文件32中选择特定于 BMSB 的基因。
  2. 确保所选感兴趣的区域在200到500基对之间有所不同。
  3. 使用以下描述的条件进行聚合酶链反应 (PCR), 生成与基因组 DNA 感兴趣的基因片段。有关特定于基因的寡核苷酸, 请参见表 1
    1. pcr 反应: 在0.25 毫升的 pcr 管中, 结合5µL 10X PCR 缓冲器, 4 µL dNTP 混合物 (2.5 毫米每), 2 µL dna 模板 (50 ng/µL), 2.5 µL 每个引物1和 2 (10 µM), 0.25 µL 的 dna 聚合酶 (5 U/µL), DNase/RNase 免费水可达50µL。
    2. pcr 条件: 循环 pcr 反应放大感兴趣的区域在95°c 为 3 min 跟随30个周期98°c 十年代, 55 °c 为三十年代, 72°C 为1分钟. 孵育反应在72°c 为另外的10分钟. 纯化 PCR 反应用净化套件。
  4. T7 RNA 聚合酶启动子序列 (5 '-GAA TTA ata GGG AGA-3 ') 的基因特异引物进一步放大获得的 PCR 片段, 如前所述62
  5. 使用 LacZ 基因作为阴性对照 (模拟) 的 rna 干扰。
    注: LacZ 是一种基因, 编码β乳糖酶从 Escherichiacoli 基因组 DNA 中扩增 (使用的引物在 1 中列出)。
  6. 执行体外转录以产生 dsRNA, 如前面所描述的62
  7. 溶解和并用重悬产生的 dsRNA 在150µL DNase/RNase 自由水, 测量浓度, 并存储在-80 °c, 以供将来使用。

3. 使用青豆运送 dsRNA

  1. 选择早 4th龄 BMSB 若虫孵化从相同的卵质量和饿死24小时之前, dsRNA 喂养。
  2. 选择细长认证的有机青豆 (菜豆), 用0.2% 次氯酸钠溶液冲洗5分钟。
    注: 选用细长青豆, 可方便地在2毫升离心管中容纳豆类。
  3. 清洗3次与 ddH2O 和允许空气干燥。
  4. 用干净的刀片修剪从花萼末端到总长度为7.5 厘米的青豆。
  5. 将洗净和修剪过的青豆浸泡在含300µL 控制溶液的无盖2毫升离心管中 (1:10 的绿色食品着色 (配料: 水、丙烯乙二醇、Fd & C 黄5、Fd & C 蓝1和 Propylparaben 作为防腐剂))。
  6. 使稀释的体外合成 LacZ、JHAMT 或 Vg dsRNAs, 稀释5µg 或20µg 300 µL RNase/DNase 游离水, 分别产生0.017 µg/µL 或0.067 µg/µL 的最终浓度。
  7. 将洗净和修剪过的青豆浸入2毫升的离心管中, 其中含有300µL 的 dsRNA 溶液 (从步骤 3.6)。
  8. 包裹和密封的离心管包围浸泡豆的边缘, 以避免蒸发的 dsRNA 溶液和防止动物进入离心管。
  9. 将这些管子以直立的方式放置在室温下3小时, 使 dsRNA 溶液通过毛细管作用在整个绿豆中加载。
  10. 把这些管子放在干净的培养容器里 (聚丙烯)。将三饥饿的 4th龄 BMSB 若虫放在养殖容器中。
  11. 每种养殖容器治疗三只动物, 每只含有三个青豆和绿色食物着色或 dsRNA 溶液。保持昆虫在25°c 和72% 相对湿度, 在16升: 8 d 光周期在孵化器。
  12. 允许昆虫在青豆 (浸泡和吸收 dsRNA) 5 天, 但补充新鲜的饮食 dsRNA 处理绿色珠后3天。

4. BMSB 干扰介导沉默后基因表达的实时定量 (qPCR) 分析

  1. 测量 qPCR 对转录表达水平的影响。
  2. 从 dsRNA 处理的动物中分离出总 RNA 并合成 cDNA62
  3. 使用实时 PCR 系统和在表 1中列出的引物设置 qPCR 反应。使用以下 qPCR 循环条件:95 °c 为10分钟跟随40个周期95°c 为十五年代, 60 °c 为1分钟, 连同离解步包括95°c 为十五年代, 60 °c 为1分钟, 95 °c 为十五年代和60°c 十五年代。
  4. 确定 qPCR 标准: 使用从正常动物中分离出来的总 RNA 所制备的 cDNA 的序列稀释作为定量的参考标准。
  5. 使用 BMSB 18s rna 作为内部标准, 以纠正从组织中 RNA 恢复的差异32

5. 叶面喷施在大型盆栽柑桔树和幼苗中的应用

注: 柑橘品种卡里佐枳橙 (中华柑桔 XPoncirus枳芸香) 的植物, 在自然光照和温度下, 在1.2 升容器中生长。这些植物不断修剪以促进新的叶面芽的生长, 称为 "冲洗"。非加太更喜欢在柑橘的新增长中喂养和产卵64

  1. 选择植物或幼苗, 不要用水2-3 天之前, 让土壤干燥, 以潮湿, 但不完全干燥。
  2. 使用手泵喷雾瓶将200毫升的 dsRNA 溶液 (0.5 毫克/毫升) 应用于下部树冠 (图 4A)。
    注: 在 DNase/RNase 自由水中准备上述 dsRNA 溶液。
  3. 喷后应用, 允许应用 dsRNA 溶液完全吸收叶子。
    注: 柑橘树吸收了应用的 dsRNA, 然后从新的生长或在应用之前覆盖的树枝上提取出来;dsRNA 是可检测的使用 qPCR 和显示系统的移动到树顶篷叶在 3-4 h44,45,46
  4. 从四个分支的小贴士中收集大约10叶, 以25-40 天后的新增长为例。提取总 RNA 并通过反向转录 pcr (rt-pcr) 和 qPCR 来分析应用的 dsRNA 触发器是否存在, 使用表1中列出的引物和以前描述的方法46
    注意: 示例收集、总 RNA 隔离、RT PCR 和 qPCR 都是按照前面描述的46进行的。
  5. 同样, 局部喷洒10毫升 dsRNA 到下部的幼苗或小盆栽树叶。
    注: Hemipteran 昆虫 (非加太和 GWSS) 通常在24小时喂食, 在新的生长 (叶子) 的治疗后, 没有直接喷洒, 或生长几周后, 或整个植物。这产生的昆虫, 测试阳性的 dsRNA 在 3, 6, 10 天, 产后喂养。

6. 土壤/根系淋湿在大、小盆栽柑桔树和幼苗中的应用

  1. 选择植物或幼苗, 不要用水2-3 天之前, 让土壤干燥, 以潮湿, 但不完全干燥 (这创造空气空间, 以保持液体溶液的应用)。
  2. 将1升的 dsRNA 溶液 (0.2 毫克/毫升) 添加到大型盆栽植物 (约2.5 米) 的土壤中, 并在 1 h 之后添加1升水 (追赶)。
  3. 在部分干土中应用100毫升的 dsRNA 溶液 (1.33 毫克/毫升) 到1米高的盆栽树木的土壤中。
  4. 对于小苗, 应用10毫升的 dsRNA 溶液 (1 毫克/毫升) 到土壤中的锥或裸根 (图 4B, C)。
  5. 允许接收 dsRNA 溶液的植物作为土壤淋湿浸泡30分钟。然后应用纯水处理, 以辅助吸收根 (20 毫升的植物在黄色容器, 或100毫升, 如果较大的盆栽是 > 1 加仑)。
    注: 局部应用 dsRNA, 在3-6 小时后的治疗中发现了分支机构的远端尖端, 显示系统的运动通过树木。新的生长分支检测阳性 dsRNA 60-90 天后治疗。在 dsRNA 喂养生物测定44中, 向昆虫 (ACP 和 GWSS) 提供扦插。

7. 茎龙头 (树干注射) 在大盆栽柑桔树和幼苗中的应用

  1. 选择柑橘幼苗, 新的, 或大约3.5 年的老植物注射 dsRNA 使用茎水龙头 (树干注射) 方法。
  2. 在柑橘类植物钻孔中使用钻头和10毫米钻头, 注意不要超过2厘米, 或大约一半直径的茎。
  3. 用0.6 厘米 (¼英寸) 宽条密封膜将每个喷油器的铜尖包裹4-6 次, 以防止靠近尖端的渗漏。
  4. 填充树干喷油器与6毫升 (1.7 毫克/毫升) 的 dsRNA 溶液稀释在 DNase/RNase 自由水 (这里表示为有色溶液)。
  5. 将溶液注入树的树干中, 将注射器留在树干中6-10 小时, 以允许吸收 dsRNA 溶液。允许昆虫在3、10和30天后处理后, 从处理过的树木的扦插中觅食。
    注意: 使用主干注入方法注射的 dsRNA 在树中持续了30-60 天41,42,44。qPCR 使用表 1中列出的引物执行了对 rna 干扰的验证。

8. dsRNA 处理的粘土颗粒通过土壤输送到昆虫

  1. 将粘土吸收剂倒入50毫升锥形管中, 管上35毫升 (约30克粘土吸收剂)。
  2. 倒入20毫升的 dsRNA 溶液稀释在 DNase/RNase 自由水 (100 µg/毫升) 入管, 以湿所有的吸收剂。将锥形管盖上, 尖管以帮助去除空气, 并盖上管。
  3. 把管子直立, 让它代表1-2 分钟的粘土颗粒吸收溶液。
  4. 添加足够的 dsRNA 浸泡粘土到土壤混合, 以填补1加仑锅。
  5. 用手把泥土拌匀, 把 dsRNA 浸泡的粘土彻底拌入泥土中。
  6. 用此土壤 repot 苗选择 dsRNA 处理。
  7. 用水200毫升的平原水, 没有 dsRNA 的土壤。30分钟到1小时后, 跟随100毫升的清水。24小时后, 把植物放在正常的浇水时间表上。
  8. 用粘土吸收剂和 dsRNA 对经过处理的盆栽植物的4-6 叶进行每月的 dsRNA 后处理, 收集新植物生长的最顶端叶。
    注: 在24小时后处理后, 这些被处理植物的植物或扦插会被喂食到昆虫身上, 并且能够对昆虫进行长达一年的 rna 干扰 (未发表的数据)。

结果

以 BMSB 4th龄若虫为载体, 通过对侵袭性害虫进行 rna 干扰的分子生物农药的开发, 对蔬菜介导的 dsRNA 进行了试验。BMSBs 饲料使用他们的针状 stylets 被称为撕裂和冲洗的机制, 这对农作物造成相当大的损害。细长的有机青豆,寻常的L, 被用来测试如果营养素或 dsRNA 可以提供体内到 BMSB 通过喂养3。在 BMSB (图 1A) 中, 青...

讨论

rna 干扰已被证明是探索基因生物学功能和调控的重要工具, 具有很大的潜力, 可用于害虫的管理19,68,69,70, 71. 在特定昆虫种类中进行沉默的适当基因的设计和选择以及向昆虫提供相应 dsRNA 的方法都是极其重要的。将 dsRNA 到昆虫中的最佳方法必须经过经验主义的确定, 连同相对...

披露声明

作者没有什么可透露的。

致谢

作者感激地承认唐纳德-韦伯和梅根 Herlihy (美国农业部, 贝尔茨维尔, MD) 为实验和维护殖民地提供 BMSB 和 HB;和玛丽亚 t. 冈萨雷斯, 萨尔瓦多 p. 洛佩兹, (美国农业部, ARS, 皮尔斯, 佛罗里达州) 和杰姬·梅茨 (佛罗里达大学, 皮尔斯堡, 佛罗里达州) 为殖民地维护, 样品准备和分析。

材料

NameCompanyCatalog NumberComments
BMSB (H. halys) insects USDA
ACP (D. citri) insects USDA
organic green beansN/A
Citrus plantsUSDA
sodium hypochlorite solutionJ.T. Baker
green food coloring McCormick & Co., Inc
Thermo Forma chambers Thermo Fisher Scientific
Magenta vessel (Culture)Sigma
Primers IDT DNA
SensiMix SYBRBioline
qPCR ABI 7500Applied Biosystems 
Spray bottleN/A
ParafilmAmerican Can Company
TaKaRa Ex TaqClontech
QIAquickQiagen

参考文献

  1. Hoebeke, E. R., Carter, M. E. . Halyomorpha halys (Stǻl)(Heteroptera: Pentatomidae): a polyphagous plant pest from Asia newly detected in North America. , (2003).
  2. Leskey, T. C., Hamilton, G. C., et al. Pest Status of the Brown Marmorated Stink Bug, Halyomorpha Halys in the USA. Outlooks on Pest Management. 23 (5), 218-226 (2012).
  3. Peiffer, M., Felton, G. W. Insights into the Saliva of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Pentatomidae). PloS one. 9 (2), e88483 (2014).
  4. Anderson, B. E., Miller, J. J., Adams, D. R. Irritant contact dermatitis to the brown marmorated stink bug, Halyomorpha halys. Dermatitis : contact, atopic, occupational, drug. 23 (4), 170-172 (2012).
  5. Mertz, T. L., Jacobs, S. B., Craig, T. J., Ishmael, F. T. The brown marmorated stinkbug as a new aeroallergen. The Journal of allergy and clinical immunology. 130 (4), 999-1001 (2012).
  6. McClean, A. P. D., Schwarz, R. E. Greening or blotchy-mottle disease of citrus. Phytophylactica. 2 (3), 177-194 (2012).
  7. Bové, J. M. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology. 88 (1), 7-37 (2006).
  8. Kuhar, T., Morrison, R., Leskey, T., Aigner, J. . Integrated pest management for brown marmorated stink bug in vegetables. , (2016).
  9. Tiwari, S., Mann, R. S., Rogers, M. E., Stelinski, L. L. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest management science. 67 (10), 1258-1268 (2011).
  10. Baum, J. A., Bogaert, T., et al. Control of coleopteran insect pests through RNA interference. Nature Biotechnology. 25 (11), 1322-1326 (2007).
  11. Hannon, G. J. RNA interference. Nature. 418 (6894), 244-251 (2002).
  12. Mello, C. C., Conte, D. Revealing the world of RNA interference. Nature. 431 (7006), 338-342 (2004).
  13. Macrae, I. J., Zhou, K., et al. Structural basis for double-stranded RNA processing by Dicer. Science(New York, N.Y.). 311 (5758), 195-198 (2006).
  14. Bernstein, E., Caudy, A. A., Hammond, S. M., Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409 (6818), 363-366 (2001).
  15. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., Plasterk, R. H. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & development. 15 (20), 2654-2659 (2001).
  16. Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., Mukherjee, S. K. RNA interference: biology, mechanism, and applications. Microbiology and molecular biology reviews : MMBR. 67 (4), 657-685 (2003).
  17. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 110 (5), 563-574 (2002).
  18. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116 (2), 281-297 (2004).
  19. Timmons, L., Fire, A. Specific interference by ingested dsRNA. Nature. 395 (6705), 854 (1998).
  20. Clemens, J. C., Worby, C. A., et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences of the United States of America. 97 (12), 6499-6503 (2000).
  21. Saleh, M. C., van Rij, R. P., et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature cell biology. 8 (8), 793-802 (2006).
  22. Amdam, G. V., Simões, Z. L. P., Guidugli, K. R., Norberg, K., Omholt, S. W. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC biotechnology. 3, 1 (2003).
  23. Whyard, S., Singh, A. D., Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect biochemistry and molecular biology. 39 (11), 824-832 (2009).
  24. Huvenne, H., Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiology. 56 (3), 227-235 (2010).
  25. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391 (6669), 806-811 (1998).
  26. Kennerdell, J. R., Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 95 (7), 1017-1026 (1998).
  27. Gatehouse, H. S., Gatehouse, L. N., Malone, L. A. Amylase activity in honey bee hypopharyngeal glands reduced by RNA interference. Journal of Apicultural. , (2004).
  28. Jaubert-Possamai, S., Le Trionnaire, G., Bonhomme, J., Christophides, G. K., Rispe, C., Tagu, D. Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC biotechnology. 7, 63 (2007).
  29. Martín, D., Maestro, O., Cruz, J., Mané-Padrós, D., Bellés, X. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Journal of Insect Physiology. 52 (4), 410-416 (2006).
  30. Bansal, R., Mittapelly, P., Chen, Y., Mamidala, P., Zhao, C., Michel, A. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug. PloS one. 11 (5), e0152730 (2016).
  31. Terenius, O., Papanicolaou, A., et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology. 57 (2), 231-245 (2011).
  32. Sparks, M. E., Shelby, K. S., Kuhar, D., Gundersen-Rindal, D. E. Transcriptome of the Invasive Brown Marmorated Stink Bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae). PloS one. 9 (11), e111646 (2014).
  33. Tabara, H., Grishok, A., Mello, C. C. RNAi in C. elegans: soaking in the genome sequence. Science (New York, N.Y.). 282 (5388), 430-431 (1998).
  34. Baum, J. A., Roberts, J. K. Chapter Five - Progress Towards RNAi-Mediated Insect Pest Management. Insect Midgut and Insecticidal Proteins. 47, 249-295 (2014).
  35. Walshe, D. P., Lehane, S. M., Lehane, M. J., Haines, L. R. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Molecular Biology. 18 (1), 11-19 (2009).
  36. Turner, C. T., Davy, M. W., MacDiarmid, R. M., Plummer, K. M., Birch, N. P., Newcomb, R. D. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology. 15 (3), 383-391 (2006).
  37. Bautista, M. A. M., Miyata, T., Miura, K., Tanaka, T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect biochemistry and molecular biology. 39 (1), 38-46 (2009).
  38. Maori, E., Paldi, N., et al. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Molecular Biology. 18 (1), 55-60 (2009).
  39. Hunter, W., Ellis, J., Hayes, J., Westervelt, D., Glick, E. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathogens. 6 (12), e1001160 (2010).
  40. Christiaens, O., Smagghe, G. The challenge of RNAi-mediated control of hemipterans. Current Opinion in Insect Science. 6, 15-21 (2014).
  41. Hunter, W. B., Hail, D., Tipping, C., Paldi, N. RNA interference to reduce sharpshooters, the glassy-winged sharpshooter, and the Asian citrus psyllid. Symposium. , 24-27 (2010).
  42. Hunter, W. B., Glick, E., Paldi, N., Bextine, B. R. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwestern Entomologist. , (2012).
  43. Hail, D. A., Dowd, S., Hunter, W. H., Bextine, B. R. Investigating the transcriptome of the potato psyllid (Bactericera cockerelli): toward an RNAi based management strategy. , 183-186 (2010).
  44. de Andrade, E. C., Hunter, W. B. RNA Interference-Natural Gene-Based Technology for Highly Specific Pest Control (HiSPeC). RNA INTERFERENCE. , (2016).
  45. Taning, C. N. T., Andrade, E. C., Hunter, W. B., Christiaens, O., Smagghe, G. Asian Citrus Psyllid RNAi Pathway - RNAi evidence. Scientific reports. 6, 38082 (2016).
  46. Andrade, E. C., Hunter, W. B. RNAi feeding bioassay: development of a non-transgenic approach to control Asian citrus psyllid and other hemipterans. Entomologia Experimentalis et Applicata. 162 (3), 389-396 (2017).
  47. Joga, M. R., Zotti, M. J., Smagghe, G., Christiaens, O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Frontiers in physiology. 7, 553 (2016).
  48. Zhang, X., Zhang, J., Zhu, K. Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology. 19 (5), 683-693 (2010).
  49. Li-Byarlay, H., Li, Y., et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences of the United States of America. 110 (31), 12750-12755 (2013).
  50. Das, S., Debnath, N., Cui, Y., Unrine, J., Palli, S. R. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS applied materials & interfaces. 7 (35), 19530-19535 (2015).
  51. Nimesh, S. Recent patents in siRNA delivery employing nanoparticles as delivery vectors. Recent patents on DNA & gene sequences. 6 (2), 91-97 (2012).
  52. Draz, M. S., Fang, B. A., et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 4 (9), 872-892 (2014).
  53. Swevers, L., Raikhel, A. S., Sappington, T. W. Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. Comprehensive. , (2005).
  54. Tufail, M., Takeda, M. Molecular characteristics of insect vitellogenins. Journal of Insect Physiology. 54 (12), 1447-1458 (2008).
  55. Hagedorn, H. H., Kunkel, J. G. Vitellogenin and vitellin in insects. Annual review of entomology. , (1979).
  56. Brandt, B. W., Zwaan, B. J., Beekman, M. Shuttling between species for pathways of lifespan regulation: a central role for the vitellogenin gene family?. Bioessays. , (2005).
  57. Murphy, C. T., McCarroll, S. A., et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 424 (6946), 277-283 (2003).
  58. Shinoda, T., Itoyama, K. Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proceedings of the National Academy of Sciences of the United States of America. 100 (21), 11986-11991 (2003).
  59. Bellés, X. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual review of entomology. 55, 111-128 (2010).
  60. Nouzova, M., Edwards, M. J., Mayoral, J. G., Noriega, F. G. A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect biochemistry and molecular biology. 41 (9), 660-669 (2011).
  61. Huang, J., Marchal, E., Hult, E. F., Tobe, S. S. Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata. PloS one. 10 (2), e0117291 (2015).
  62. Ghosh, S. K. B., Hunter, W. B., Park, A. L., Gundersen-Rindal, D. E. Double strand RNA delivery system for plant-sap-feeding insects. PloS one. 12 (2), e0171861 (2017).
  63. Khrimian, A., Zhang, A., et al. Discovery of the aggregation pheromone of the brown marmorated stink bug (Halyomorpha halys) through the creation of stereoisomeric libraries of 1-bisabolen-3-ols. Journal of natural products. 77 (7), 1708-1717 (2014).
  64. Hall, D. G., Richardson, M. L., El-Desouky, A., Halbert, S. E. Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomologia Experimentalis et Applicata. 146 (2), 207-223 (2012).
  65. Murphy, K. A., Tabuloc, C. A., Cervantes, K. R., Chiu, J. C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Scientific reports. 6, 22587 (2016).
  66. San Miguel, ., K, J. G., Scott, The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest management science. 72 (4), 801-809 (2016).
  67. Li, H., Guan, R., Guo, H., Miao, X. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant, cell & environment. 38 (11), 2277-2285 (2015).
  68. Hull, D., Timmons, L. Methods for delivery of double-stranded RNA into Caenorhabditis elegans. Methods in molecular biology (Clifton, N.J.). 265, 23-58 (2004).
  69. Timmons, L., Court, D. L., Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 263 (1-2), 103-112 (2001).
  70. Burand, J. P., Hunter, W. B. RNAi: future in insect management. Journal of Invertebrate Pathology. 112 Suppl, S68-S74 (2013).
  71. Rodrigues, T. B., Figueira, A. . Management of Insect Pest by RNAi-A New Tool for Crop Protection. , (2016).
  72. Baumann, A. M. T., Bakkers, M. J. G., et al. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nature communications. 6, 7673 (2015).
  73. Araujo, R. N., Santos, A., Pinto, F. S., Gontijo, N. F., Lehane, M. J., Pereira, M. H. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect biochemistry and molecular biology. 36 (9), 683-693 (2006).
  74. Wuriyanghan, H., Rosa, C., Falk, B. W. Oral Delivery of Double-Stranded RNAs and siRNAs Induces RNAi Effects in the Potato/Tomato Psyllid, Bactericerca cockerelli. PloS one. 6 (11), e27736 (2011).
  75. Kamath, R. S., Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods (San Diego, Calif). 30 (4), 313-321 (2003).
  76. Yu, N., Christiaens, O., et al. Delivery of dsRNA for RNAi in insects: an overview and future directions). Insect Science. , (2012).
  77. Allen, M. L., Walker, W. B. Saliva of Lygus lineolaris digests double stranded ribonucleic acids. Journal of Insect Physiology. 58 (3), 391-396 (2012).
  78. Wynant, N., Santos, D., Verdonck, R., Spit, J., Van Wielendaele, P., Vanden Broeck, J. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect biochemistry and molecular biology. 46, 1-8 (2014).
  79. Ghosh, S. K. B., Gundersen-Rindal, D. E. Double strand RNA-mediated RNA interference through feeding in larval gypsy moth, Lymantria dispar (Lepidoptera: Erebidae). European Journal of Entomology. 114, 170-178 (2017).
  80. Baigude, H., Rana, T. M. Delivery of therapeutic RNAi by nanovehicles. Chembiochem : a European journal of chemical biology. 10 (15), 2449-2454 (2009).
  81. Mitter, N., Worrall, E. A., et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature plants. 3, 16207 (2017).
  82. Dubelman, S., Fischer, J., et al. Environmental fate of double-stranded RNA in agricultural soils. PloS one. 9 (3), e93155 (2014).
  83. Kola, V. S. R., Renuka, P., Madhav, M. S., Mangrauthia, S. K. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Frontiers in physiology. 6, 119 (2015).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

135RNA

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。