登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

在这里,我们提出一个协议,用于测量从带有标准几何形状的 3D 打印金属幻象的口腔内扫描仪获得的竞争拱形数字印象的每个部分的失真程度。

摘要

自从牙医开始通过使用口腔内扫描仪获取 3D 图像来制作数字图像以来,数字工作流程一直积极用于制作牙科修复或口腔器具。由于扫描患者口腔内口腔的性质,口腔内扫描仪是一种手持设备,带有一个小光学窗口,将小数据拼接在一起,完成整个图像。在完整的印记过程中,印象体可能发生变形,并影响修复或装置的配合。为了测量这些变形,使用金属 3D 打印机设计和生产了主试样。设计的参考几何体允许为每个印图设置独立的坐标系,并测量圆柱顶圆中心的 x、y 和z位移,并评估印图的变形。 为了评价该方法的可靠性,计算了圆柱体的坐标值,比较了原始计算机辅助设计(CAD)数据与工业扫描仪获取的参考数据。两组之间的坐标差大多小于50μm,但由于3D打印在摩尔上倾斜设计的圆柱体的z坐标中的公差,偏差很高。但是,由于打印模型设置了新标准,因此不会影响测试评估的结果。参考扫描仪的可重复性为11.0~1.8 μm。此测试方法可用于识别和改进口腔内扫描仪的内在问题,或通过测量完整拱形数字印象的每个部分的失真程度来建立扫描策略。

引言

在传统的牙科治疗过程中,固定修复或可拆卸假牙是在石膏制成的模型上,并浸入硅胶或不可逆的氢胶材料。由于间接制造的假肢是在口腔中交付的,因此已经做了大量的研究来克服一系列此类制造工艺1、2的错误。最近,一种数字方法被用来通过CAD过程来制造假肢,在获取3D图像后,在虚拟空间中操作模型,而不是给人留下印象3。在早期,这种光学印模方法在有限的范围内使用,例如对一颗或少量牙齿进行牙科治疗。然而,随着3D扫描仪基础技术的开发,整个拱门的数字印象现在被用于制造大规模固定修复,可拆卸的修复,如部分或全假牙,正畸器具,和植入手术指南4,5,6,7。在短区域(如单边拱门)中,数字印象的准确性令人满意。然而,由于口腔内扫描仪是一种手持式设备,通过将通过狭窄的光学窗口获得的图像拼接在一起来完成整个凹痕,因此在完成 U 形牙科拱后可以看到模型的失真。因此,在这个型号上制成的大范围设备可能不适合病人的口腔,需要很大的调整。

已经报道了各种关于使用口腔内扫描仪获得的虚拟印象体精度的研究,并且有各种研究模型和测量方法。根据研究课题,可分为临床研究8、9、10、11、12、12、体外研究13、14 ,15,16在模型单独生产研究。临床研究的优点是能够评估实际临床环境的条件,但很难控制变量并无限期地增加临床病例数。临床研究的数量并不大,因为能够评估所需的变量是有限度的。另一方面,许多通过控制变量来评估口腔内扫描仪基本性能的体外研究已经报告17。研究模型还包括部分或完整的自然牙齿拱18,19,20,21,22和一个完全凹陷的下颚与所有牙齿失去23,或牙种植体在一定间隔24、25、26、27处安装并间隔的情况,或大部分牙齿保留且仅部分牙齿的形态。牙齿失踪16,28。然而,手持式口腔内扫描仪对虚拟印象体变形的研究仅限于通过将虚拟印象体与参考数据叠加并表示为一个数字而创建的颜色映射对偏差进行定性评估。每个数据的值。很难准确测量完整拱形的 3D 失真,因为大多数研究只检查具有非定向距离偏差的牙科拱门的局部部分。

本研究使用带有坐标系的标准模型,研究了口腔内扫描仪在光学印象过程中牙拱的变形。本研究的目的是提供一种评估口腔内扫描仪精度性能的方法,该扫描仪通过光学硬件和处理软件的差异表现出各种特性。

研究方案

1. 主试样制备

  1. 模型准备
    1. 取下颌面完整拱形模型上的人造牙齿(左、右母条、第二前摩尔和第二摩尔),仅剩1/5的颈椎部分。
  2. CAD 设计
    1. 使用参考扫描仪获取主试样的数据。
    2. 使用逆向工程软件在修剪的六齿顶部设计气缸(顶部直径为 2 mm,气缸高度为 7 mm)。
    3. 在左二摩尔添加三个参考球体(直径 3.5 mm),以便从反向工程软件定义参考 3D 坐标系。
    4. 在左二摩尔圆柱体的远端和圆柱侧找到一个球体,以便所有圆柱体的坐标具有正值。
    5. 设计左二摩尔圆柱体,使其倾斜 30°,右二摩尔圆柱体倾斜 30°。将其他气缸设置为与模型成直角。
  3. 金属 3D 打印
    1. 用金属3D打印机制造一个使用CoCr合金的幻影模型,作为病人的假牙(图1)。

2. 参考数据采集和软件分析

  1. 使用测试的口腔内扫描仪扫描幻像。
    1. 使用工业级模型扫描仪扫描金属幻像模型,获取参考图像。
  2. 通过从参考球体中提取点来建立坐标系。
    1. 将参考图像加载到反向工程分析软件中,以计算每个圆柱体的参考坐标。
    2. 通过选择参考几何体提取球体 |创建|球体|选取边界点命令,并选取参考球体表面上相距最远的四个点(补充图1补充图2)。
    3. 计算三个参考球体的中心。
    4. 使用参考几何 |创建|平面|选取点命令以连接三个球体的中心并创建平面(补充图 3)。
    5. 将成形平面设置为XY平面。
    6. 选择参考几何 |创建|平面|偏移平面命令在xy平面上方创建切线平面 (补充图 4)。
    7. 通过选择参考几何体创建切线平面和两个语言球体相会的点 |创建||ref.平面命令上的项目(补充图 5)。
    8. 使用Ref. 几何体在创建的点和两个语言球体的中心之间生成平面 |创建|平面|选取点命令 (补充图 6).
    9. 使用检查测量从此平面到球体中心的距离 |尺寸|线性命令 (补充图 7.
    10. 创建一个平行平面,该平面使用几何体创建穿过球体的中点 |创建|平面|偏移平面命令 (补充图 8.
    11. 将成形平面设置为YZ 平面(补充图 9)。
  3. 设置x、y 和z轴。
    1. 将 buccal 球体的中心设置为坐标系的"原点"。
    2. 设置一条平行于连接其余两个球体的中心点的线,同时以Y 轴的形式在模型向前和向后方向行驶。
    3. xy平面上设置线,该直线通过原点并垂直于y轴作为X轴。
    4. 使用参考几何 |创建|坐标|选取原点和 X、Y 方向命令以创建一个新的坐标系,其中以 buccal 球体中心作为原点(补充图 10)。
    5. 将直线垂直于xy平面,并将原点作为Z 轴穿过(补充图 11)。
  4. 将此详细信息从扫描坐标系传输到新建立的坐标系。
    1. 使用参考几何 |绑定到 shell命令以修复在此过程中在扫描数据之上创建的几何图形(补充图 12)。
    2. 执行参考几何 |转换|坐标|将坐标命令对齐到从基本坐标系到新创建的坐标系的传输(补充图 13)。
    3. 通过这种方式,参照三个参考球体为金属主试样指定坐标系(补充图14)。
  5. 从主区域的气缸中提取测量点。
    1. 提取x、y和z坐标,用于六个圆柱体的上圆中心,以分析反向工程过程对指定区域的变形。
    2. 为此,请使用参考几何体|创建|气缸|选取边界点命令并在圆柱体的顶部边框上指定至少 10 个点,并在椭圆上指定与圆柱体底部的齿的齿的相同数量点(补充图 15,补充图16,和补充图 17)。
    3. 获取气缸顶部中心的提取坐标。通过将 3D 变形与要评估的口腔内扫描仪获得的数字印图的同一圆柱体的坐标值进行比较,评估每个位置的 3D 变形。

结果

根据最初设计的CAD数据计算出的每个圆柱体的坐标和工业级模型扫描仪扫描的3D打印金属主样本的参考扫描图像,如表1所示。两者之间的差异显示值低于 50 μm,但 3D 打印主试样中右侧第二摩尔圆柱体的z坐标值较低。虽然金属幻象是由高端工业3D打印机生产的,但发现一个圆柱体的高度有细微差异。当设计使用CAD软件时,金属幻象被用作参考,用各种测试的口?...

讨论

在通过评估由此产生的数字印图体来评估口腔内扫描仪准确性的研究中,最常见的方法是在参考图像上叠加数字印象数据并计算壳对壳偏差12 ,13,14,15,20,23。但是,此方法仅限于计算与配对数据的偏差值或通过颜色映射定性地评估分布。在一项通过选择?...

披露声明

作者没有什么可透露的。

致谢

这项研究得到了韩国卫生技术研发项目资助,该项目由韩国卫生与福利部资助(赠款号:HI18C0435)。

材料

NameCompanyCatalog NumberComments
EOS CobaltChrome SP2Electro Oprical SystemsH051601Powder type metal alloy for 3D printing
Geomagic Verify3D Systems2015.2.03D inspection software
Prosthetic Restoration Jaw ModelNissin Dental Products Inc.Mandibular complete-arch model
RapidformInus technologyRF90600-10004-010000Reverse engineering software
stereoSCAN R8AICON 3D Systems GmbHIndustrial-level model scanner

参考文献

  1. McLean, J. W., von Fraunhofer, J. A. The estimation of cement film thickness by an in vivo technique. British Dental Journal. 131 (3), 107-111 (1971).
  2. Park, J. M., Hong, Y. S., Park, E. J., Heo, S. J., Oh, N. Clinical evaluations of cast gold alloy, machinable zirconia, and semiprecious alloy crowns: A multicenter study. Journal of Prosthetic Dentistry. 115 (6), 684-691 (2016).
  3. Keul, C., et al. Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization--a laboratory study. Dental Materials. 30 (4), 400-407 (2014).
  4. Ritter, L., et al. Accuracy of chairside-milled CAD/CAM drill guides for dental implants. International Journal of Computerized Dentistry. 17 (2), 115-124 (2014).
  5. Grunheid, T., McCarthy, S. D., Larson, B. E. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. American Journal of Orthodontics and Dentofacial Orthopedics. 146 (5), 673-682 (2014).
  6. Penarrocha-Oltra, D., Agustin-Panadero, R., Bagan, L., Gimenez, B., Penarrocha, M. Impression of multiple implants using photogrammetry: description of technique and case presentation. Medicina Oral, Patolodia Oral y Cirugia Bucal. 19 (4), e366-e371 (2014).
  7. Kattadiyil, M. T., Mursic, Z., AlRumaih, H., Goodacre, C. J. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. Journal of Prosthetic Dentistry. 112 (3), 444-448 (2014).
  8. Kim, J., et al. Comparison of experience curves between two 3-dimensional intraoral scanners. Journal of Prosthetic Dentistry. 116 (2), 221-230 (2016).
  9. Lim, J. H., Park, J. M., Kim, M., Heo, S. J., Myung, J. Y. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience. Journal of Prosthetic Dentistry. 119 (2), 225-232 (2018).
  10. Muhlemann, S., Greter, E. A., Park, J. M., Hammerle, C. H. F., Thoma, D. S. Precision of digital implant models compared to conventional implant models for posterior single implant crowns: A within-subject comparison. Clinical Oral Implants Research. 29 (9), 931-936 (2018).
  11. Park, J. M., Hammerle, C. H. F., Benic, G. I. Digital technique for in vivo assessment of internal and marginal fit of fixed dental prostheses. Journal of Prosthetic Dentistry. 118 (4), 452-454 (2017).
  12. Ender, A., Zimmermann, M., Attin, T., Mehl, A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clinical Oral Investigations. 20 (7), 1495-1504 (2016).
  13. Kim, R. J., Park, J. M., Shim, J. S. Accuracy of 9 intraoral scanners for complete-arch image acquisition: A qualitative and quantitative evaluation. Journal of Prosthetic Dentistry. 120 (6), 895-903 (2018).
  14. Ender, A., Mehl, A. Accuracy in dental medicine, a new way to measure trueness and precision. Journal of Visualized Experiments. (86), e51374 (2014).
  15. Ender, A., Mehl, A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence International. 46 (1), 9-17 (2015).
  16. Ajioka, H., Kihara, H., Odaira, C., Kobayashi, T., Kondo, H. Examination of the Position Accuracy of Implant Abutments Reproduced by Intra-Oral Optical Impression. PLOS ONE. 11 (10), e0164048 (2016).
  17. Patzelt, S. B., Lamprinos, C., Stampf, S., Att, W. The time efficiency of intraoral scanners: an in vitro comparative study. Journal of Americal Dental Association. 145 (6), 542-551 (2014).
  18. Gan, N., Xiong, Y., Jiao, T. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLOS ONE. 11 (7), e0158800 (2016).
  19. Rehmann, P., Sichwardt, V., Wostmann, B. Intraoral Scanning Systems: Need for Maintenance. International Journal of Prosthodontics. 30 (1), 27-29 (2017).
  20. Patzelt, S. B., Emmanouilidi, A., Stampf, S., Strub, J. R., Att, W. Accuracy of full-arch scans using intraoral scanners. Clinical Oral Investigations. 18 (6), 1687-1694 (2014).
  21. Muallah, J., et al. Accuracy of full-arch scans using intraoral and extraoral scanners: an in vitro study using a new method of evaluation. International Journal of Computerized Dentistry. 20 (2), 151-164 (2017).
  22. Treesh, J. C., et al. Complete-arch accuracy of intraoral scanners. Journal of Prosthetic Dentistry. 120 (3), 382-388 (2018).
  23. Patzelt, S. B., Vonau, S., Stampf, S., Att, W. Assessing the feasibility and accuracy of digitizing edentulous jaws. Journal of Americal Dental Association. 144 (8), 914-920 (2013).
  24. Andriessen, F. S., Rijkens, D. R., van der Meer, W. J., Wismeijer, D. W. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: a pilot study. Journal of Prosthetic Dentistry. 111 (3), 186-194 (2014).
  25. Gimenez, B., Ozcan, M., Martinez-Rus, F., Pradies, G. Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth. International Journal of Oral and Maxillofacial Implants. 29 (4), 853-862 (2014).
  26. Gimenez, B., Ozcan, M., Martinez-Rus, F., Pradies, G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clinical Implant Dentistry and Related Research. 17 Suppl 1, e54-e64 (2015).
  27. Papaspyridakos, P., et al. Digital versus conventional implant impressions for edentulous patients: accuracy outcomes. Clinical Oral Implants Research. 27 (4), 465-472 (2016).
  28. Flugge, T. V., Att, W., Metzger, M. C., Nelson, K. Precision of Dental Implant Digitization Using Intraoral Scanners. International Journal of Prosthodontics. 29 (3), 277-283 (2016).
  29. Kim, S. Y., et al. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging. International Journal of Prosthodontics. 26 (2), 161-163 (2013).
  30. Ender, A., Mehl, A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. International Journal of Computerized Dentistry. 16 (1), 11-21 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

147

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。