JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

使用组蛋白脱乙酰雅酶(HDAC)抑制剂的三维(3D)入侵测定中,压伤抑制剂对胶质瘤癌细胞迁移的影响以高分辨率共聚焦显微镜为特征。

摘要

癌症研究中的药物发现和开发越来越多地基于3D格式的药物屏幕。针对癌细胞的迁移和侵入性潜力,以及由此而转移的疾病传播的新型抑制剂正在被发现,并被视为高侵入性癌症(如胶质瘤)的补充疗法。因此,在添加药物后生成数据,以便对3D环境中的细胞进行详细分析。此处描述的方法,将球体入侵检测与高分辨率图像捕获和由共聚焦激光扫描显微镜 (CLSM) 进行数据分析相结合,可详细描述潜在抗迁移抑制剂的影响MI-192对胶质瘤细胞。球状物从细胞系生成,用于低附着96孔板中的入侵测定,然后准备进行CLSM分析。由于易用性和可重复性,描述的工作流程比其他常用的球形生成技术更可取。与传统广域方法相比,共聚焦显微镜获得的图像分辨率增强,可以识别和分析以下三维环境中迁移细胞的不同形态变化。用止血药物MI-192治疗。

引言

用于临床前药物发现和潜在抗癌药物的开发的三维球形技术正日益受到传统药物筛选的青睐;因此,有较多的米格雷静态 - 迁移和入侵预防 - 药物的发展。癌症治疗这些发展背后的理由很明确:3D球形测定是筛选潜在抗癌药物的更现实的方法,因为它们比细胞单层培养更忠实地模仿3D肿瘤结构,更准确地概括药物-肿瘤相互作用(动力学),并允许在肿瘤相关环境中描述药物活性。此外,许多癌症类型对化学毒性药物的抗药性上升,以及癌症患者因癌细胞迁移到遥远肿瘤部位的能力而发生转移而死亡率高,支持了化疗药物的加入在未来的临床癌症试验1中,将癌细胞的迁移潜力作为辅助治疗。高侵入性癌症尤其如此,如高等级胶质细胞瘤(GBM)。GBM 管理包括手术、放疗和化疗。然而,即使结合治疗,大多数患者在初步诊断后1年内复发,中位存活期为11-15个月2,3。在过去几年中,3D 技术领域取得了巨大进步:旋转式系统、微结构结构和 3D 支架以及其他单个检测正在不断改进,以便进行大规模的常规测试4 567.但是,必须以有意义的方式分析从这些检测中获得的结果,因为使用 2D 图像分析系统分析 3D 生成数据的尝试通常会妨碍数据解释。

尽管在图像采集速度和光毒性降低方面更可取,但大多数广域系统仍然受到分辨率8的限制。因此,除了与药物疗效相关的数据读出外,如果使用宽场系统成像,药物作用对迁移细胞的3D细胞结构的详细影响将不可避免地丧失。相反,共聚焦激光扫描显微镜 (CLSM) 可捕获高质量光学切片图像,这些图像可在使用计算机软件在 3D 采集后重建和渲染。因此,CLSM 易于适用于成像复杂的 3D 细胞结构,从而能够询问抗压格雷抑制剂对 3D 结构的影响,并深入分析细胞迁移机制。这无疑将指导未来的止血药物开发。这里描述了球体生成、药物治疗、染色方案以及高分辨率共聚焦显微镜表征的组合工作流程。

Access restricted. Please log in or start a trial to view this content.

研究方案

1. 生成细胞类球体

第1天

  1. 根据被调查的细胞系的要求准备标准培养基。
  2. 使用无菌处理技术在组织培养罩中执行所有组织培养相关的步骤。
  3. 胰腺化并计数癌细胞。每盘使用20 mL的细胞悬浮液。将细胞悬浮液保存在明确标记的无菌通用管中。
  4. 向每个井添加预定数量的单元。所需的细胞初始数量和最终球体大小取决于被调查的细胞系的增殖率。
    注:对于已建立的胶质瘤细胞系,如U251和KNS429,10,5x 103细胞/mL将在孵育4天后产生一个显微可见的球体(200或800μm)。
  5. 通过温和的反转重新悬浮在万能管中的细胞,以避免细胞聚集。将细胞悬浮液200μL插入96孔板的每个孔中。如果不需要所有井,建议在每个空井中加入 200 μL 的 1x PBS,以避免蒸发。
  6. 在37°C下正常孵育孵化器中的细胞。
    注:胶质瘤癌细胞系等细胞系将在24小时内形成球形。

第2天

  1. 24小时后通过明场显微镜检查细胞。根据细胞系的不同,细胞可能在井底形成可检测到的球形。
    注:已建立的胶质瘤癌细胞系在24小时内容易形成球体。患者衍生的胶质瘤癌细胞系可能需要长达1-2周的时间。

2. 胶原蛋白入侵测定

第3天

  1. 将胶原蛋白、5x 培养基、1 M NaOH 和一个 20 mL 管放在冰上。
  2. 小心并缓慢地将10.4 mL的冷胶原蛋白加入冷冻培养管。避免气泡。这个数量的胶原蛋白足以容纳一个96孔板。升加是可能的,但建议一次准备一个20 mL的管子。
  3. 轻轻加入1.52 mL的冷无菌5x培养基。避免气泡。
  4. 在使用前,轻轻加入72 μL的冷无菌1M NaOH。将溶液放在冰上。
  5. 通过移液轻轻混合。避免气泡。高效混合会导致介质中的颜色变化(从红色到橙色-红色 (pH 7.4)。将混合物留在冰上,直到使用。
  6. 关键步骤:从第 1 天准备的 96 孔板中取出 190 μL 上清液。小心不要打扰在井底形成的球体。以对井侧面而不是中心的角度使用移液器。
  7. 轻轻地将100μL的胶原蛋白混合物加入每个井。为了防止任何球体干扰,移液器混合在井的一侧。避免气泡。在室温下将剩余的胶原蛋白混合物保存在20 mL管中,以评估聚合。
  8. 在培养箱中孵育板至少10分钟,使胶原蛋白聚合。作为指南,如果剩下的胶原蛋白已设置,成为半固体和海绵状,球体准备用抑制剂治疗。
  9. 将浓度为2倍的药物或抑制剂加入培养基。将介质轻轻添加到每口井(每口井 100 μL)。再次,移液介质向下的井侧,以避免球形干扰。
  10. 观察并成像每个球体,有时通过明亮的场显微镜T = 0 h、24 h、48 h和72 h来评估药物活性。然后将盘子返回到培养箱。
    注:根据细胞系的侵入性行为,从24小时起可以观察到从原始球形核心迁移。

3. 制备胶原蛋白嵌入式球体和迁移细胞,用于共聚焦显微镜

  1. 将板放入组织培养罩中,轻轻取出上清液 (200 μL)。同样,注意不要干扰球形,避免接触胶原蛋白,因为这可能会干扰胶原蛋白塞。
  2. 将上清液替换为 100 μL 的 1x PBS。重复此洗涤步骤 3 倍。
  3. 取出最终洗涤液,并在 1x PBS(每口 100 μL)中用 4% 甲醛进行更换。
    警告:甲醛是一种潜在的致癌物质。按照健康和安全准则小心处理。
  4. 将 96 孔板放在实验室工作台上,用铝箔盖住,并在室温下放置 24 小时。
  5. 小心地去除甲醛,用1x PBS更换。重复此 1x PBS 洗涤 3 倍。
  6. 在 1x PBS 中准备 0.1% Triton X-100。拆下 1x PBS 洗涤液,用 100 μL 的 Triton X-100 溶液更换。在室温下孵育30分钟。同时,用1x PBS和0.05%脱脂奶粉制备阻滞溶液,并彻底混合。
  7. 去除Triton X-100,用1x PBS洗涤3倍。在每个井中加入100 μL的阻滞溶液,孵育15分钟。
  8. 在预定浓度处稀释阻断缓冲液中所需的原抗体。在这里,使用抗小鼠IgG乙酰化图布林抗体(1:100)。
  9. 在15,682 x g下将原抗体阻断缓冲液混合物离心5分钟。小心地去除阻滞溶液,并将上清液(25±50 μL)添加到每个井中。在黑暗中在室温下孵育1小时。
  10. 取出抗体溶液,用1x PBS(每口100μL)清洗3倍。
  11. 除任何其他荧光污渍外,还以推荐或预定浓度稀释阻塞缓冲液中的二级抗体。在这里,使用1:500抗小鼠荧光-488结合抗体,phalloidin-594 (1:500)用于行为素染色,以及DNA染色(DAPI)。
  12. 再次,在 13,000 rpm 转速下将二次抗体溶液离心 5 分钟。
  13. 从每口井中取出阻滞溶液,并加入25~50μL的二级抗体/磷脂素/DAPI混合物。在黑暗中孵育1.5小时,在室温下。
  14. 去除二级抗体染料溶液,用1x PBS(每口100μL)清洗3倍。
  15. 用塑料移液器(200 μL)将单个胶原蛋白塞小心地提起到高品质普通玻璃滑梯的中心。
  16. 在胶原蛋白插头中加入一滴合适的安装剂,确保插头完全覆盖。避免气泡。
  17. 应用显微镜目标的最佳厚度盖玻片,用于成像,并允许在一夜之间设置。将幻灯片在黑暗中室温下存放。

4. 荧光显微镜

  1. 使用合适的共聚焦显微镜捕捉荧光图像。

Access restricted. Please log in or start a trial to view this content.

结果

三维球形技术正在促进对药物-肿瘤相互作用的理解,因为它更具有癌症特定环境的代表性。球体的生成可以通过多种方式实现;该协议使用了低粘附性 96 孔板。在测试了来自不同制造商的几种产品后,选择此处使用的板材,因为它们在成功的球形生产和均匀性方面始终表现最佳。替换步骤,其中生长培养物被胶原蛋白基质替换,是协议的关键点;必须非常小心,以消除大部...

Access restricted. Please log in or start a trial to view this content.

讨论

介绍了一种利用高分辨率共聚焦显微镜鉴定压凝药物活性的癌细胞球体的新方法。使用低粘附板比其他技术,如挂滴15,促进了产生可重复和均匀的球体用于胶原蛋白迁移和入侵测定的手段。该协议中的关键点是,在细胞球体嵌入胶原体基质之前,从96孔板中去除生长介质,并仔细处理此后含有球体的胶原蛋白塞。数字微流体16等新技术现已推出,虽然价格较高?...

Access restricted. Please log in or start a trial to view this content.

披露声明

提交人声明没有利益冲突。

致谢

我们要感谢克里斯·琼斯教授为KNS42细胞系做出了贡献。Zeiss LSM880 与 AiryScan 的共聚焦显微镜与 AiryScan 一起,是赫德斯菲尔德创新和孵化项目 (HIIP) 的一部分,该项目由利兹市地区企业合作伙伴 (LEP) 增长交易资助。显微镜图像的信用图3:卡尔蔡司显微镜有限公司,microscopy@zeiss.com。

Access restricted. Please log in or start a trial to view this content.

材料

NameCompanyCatalog NumberComments
Collagen I, rat tail, 100 mgCorning354236for glioma invasion assay; this is offered by many distributors/manufacturers and will need to be determined for both the type of assay intended and cell lines used. For glioma cancer cell lines Collagen rat tail type 1 (e.g. Corning) is the preferred choice. Collagen should be stored at 4 °C, in the dark, until required. It is not advisable to mix collagen from different batches as this may affect the consistency of the polymerized collagen.   
Coverslipsvariousvariousfor microscopy imaging
DMEM powderSigmaD5648needed at 5x concentration for collagen solution for glioma invasion assay;  this may be purchased in powdered form, made up in double distilled water and, depending upon final composition of the growth medium, completed with any additives required. The complete 5x solution should be filtered through a syringe filter system (0.22 μm) before use.
Foetal calf serumSigmaF7524-500MLneeded for cell culture of glioma cell lines
Glass slidesvariousvariousfor microscopy imaging
High glucose DMEMGibco41965062needed for cell culture of glioma cell lines
InhibitorTocrisvariousvarious - according to experimental design; inhibitors can be purchased from manufacturers such as Selleckchem and Tocris. These manufacturers offer detailed description of inhibitor characteristics, links to associated references and suggestion of working concentrations. As with all inhibitors, they may be potentially toxic and should be handled according to health and safety guidelines. Inhibitors are prepared as stock solutions as recommended by the manufacturer. As an example we used the migrastatic inhibitor MI-192 to demonstrate the use of such inhibitors. We have tested a range of migrastatic inhibitors in this way with comparable results.
Mountantvariousvariousfor microscopic imaging
NaOH (1 M)various variousNaOH can be either purchased at the required molarity or prepared from solid form. The prepared solution should be filter sterilized using a syringe filter system. One M NaOH is corrosive and care should be taken during solution preparation.
Paraformaldehyde variousvariousfor fixing spheroids and cells; make up at 4%, caution health hazard, ensure that health and safety regulations are adhered to for collagen solution for invasion assay
Pastettes (graduated pipette, 3 mL)variousvariousfor invasion assay, solution removal
PBS, sterile for tissue cultureSigmaD1408-500ML  needed for cell culture of glioma cell lines and washes for staining
Pen/strep (antibiotics)SigmaP4333needed for cell culture of glioma cell lines
Primary antibody, secondary antibody, DAPI, Phalloidinvariousvariousthere are many manufacturers for these reagents, for secondary labelled antibodies we recommend Alexa Fluor (Molecular Probes). Here we used for primary antibodies mouse anti-acetylated tubulin antibody (1/100, Abcam). For secondary antibodies we used 1/500 anti-mouse Alexa Fluor 488 conjugated antibody, Molecular Probes. For nuclear stain we used DAPI (many manufacturers) and the actin stain Phalloidin (many manufacturers) both used at recommended dilution of 1/500.
Sodium bicarbonateSigmaS5761needed for collagen solution for glioma invasion assay at 5x concentration
Sodium pyruvateSigmaP5280needed for collagen solution for glioma invasion assay at 5x concentration
TrypsinSigmaT4049for trypsinisation
Ultra low attachment platesSigma/NuncCLS7007-24EAfor glioma invasion assay; a low adherent plate is required, with 96-well plates preferred to allow for large-scale screening of compounds under investigation. There are several low adherence plates commercially available; it is advisable to test a variety of plates for optimum spheroid generation. In our experience Costar Ultra Low Cluster with lid, round bottom, works best for the generation of spheroids from glioma cancer cells in terms of 100% spheroid formation and reproducibility. These plates were also successfully used for the generation of glioma spheroids from patient-derived material, bladder and ovarian cancer cells in our laboratory. In addition, stem or progenitor neurospheres can be used in these plates to facilitate the generation of standardized neurosphere-spheroids
Stripettes (serological pipettes, sterile, 5 mL and 10 mL)various e.g. CostarCLS4488-50; CLS4487-50for tissue culture and collagen preparation
Various multichannel (50 - 250 μL) and single channel pipettes (10 μL, 50 μL, 200 μL 1 mL)variousvariousfor cell and spheroid handling
Widefield microscopyvarious variousfor observation of spheroid generation and spheroid imaging; here wide-field fluorescence images were captured using an EVOS FL cell imaging system (Thermo Fisher Scientific)
Zeiss LSM 880 CLSM equipped with a Plan Apochromat 63x 1.4 NA oil objectiveZeissquote from manufacturerConfocal images were captured using a Zeiss LSM 880 CLSM equipped with a Plan Apochromat 63x 1.4 NA oil objective. Diode 405nm, 458/488/514 nm argon multiline and HeNe 594nm lasers were used to excite Phalloidin 594, Alexa Fluor 488, and DAPI respectively. For each image a single representative optical section were captured, with all settings, both pre- and post-image capture, maintained for comparative purposes. All images were subsequently processed using the associated Zen imaging software and Adobe Photoshop.

参考文献

  1. Gandalovičová, A., et al. Migrastatics-anti-metastatic and anti-invasion drugs: promises and challenges. Trends in Cancer. 3 (6), 391-406 (2017).
  2. Delgado-López, P. D., Corrales-García, E. M. Survival in glioblastoma: a review on the impact of treatment modalities. Clinical and Translational Oncology. 18, 1062(2016).
  3. Foreman, P. M., et al. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics. 14, 333(2017).
  4. Rodrigues, T., et al. Emerging tumor spheroids technologies for 3D in vitro cancer modelling. Pharmacology and Therapeutics Technologies. 184, 201-211 (2018).
  5. Sirenko, O., et al. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay and Drug Development Technologies. 13 (7), Mary Ann Liebert, Inc. (2015).
  6. Wu, Q., et al. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening. Biomedical Microdevices. 20, 82(2018).
  7. Mosaad, E., Chambers, K. F., Futrega, K., Clements, J. A., Doran, M. R. The microwell-mesh: a high-throughput 3D prostate cancer spheroid and drug-testing platform. Scientific Reports. 8, 253(2018).
  8. Jonkman, J., Brown, C. M. Any way you slice it-a comparison of confocal microscopy techniques. Journal of Biomolecular Techniques. 26 (2), 54-65 (2015).
  9. Pontén, J. Neoplastic human glia cells in culture. Human Tumor Cells in Vitro. , Springer US. Boston. 175-206 (1975).
  10. Takeshita, I., et al. Characteristics of an established human glioma cell line, KNS-42. Neurologica Medico Chirurgica. 27 (7), 581-587 (1987).
  11. Bance, B., Seetharaman, S., Leduc, C., Boëda, B., Etienne-Manneville, S. Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and cell migration. Journal of Cell Science. 132, (2019).
  12. Bacon, T., et al. Histone deacetylase 3 indirectly modulates tubulin acetylation. Biochemical Journal. 472, 367-377 (2015).
  13. Jackman, L., et al. Tackling infiltration in paediatric glioma using histone deacetylase inhibitors, a promising approach. Neuro-Oncology. 20, i19-i19 (2018).
  14. Bhandal, K., et al. Targeting glioma migration with the histone deacetylase inhibitor MI192. Neuro-Oncology. 19, i12-i12 (2017).
  15. Del Duca, D., Werbowetski-Ogilvie, T. E., Del Maestro, R. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. Journal of Neuro-oncology. 67 (3), 295-303 (2004).
  16. Bender, B. F., Aijian, A. P., Garrell, R. L. Digital microfluidics for spheroid-based invasion assays. Lab on a Chip. 16 (8), 1505-1513 (2016).
  17. Vinci, M., et al. Advances in establishment and analysis of three dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology. 10, 29(2012).
  18. Härmä, V., et al. Quantification of dynamic morphological drug responses in 3D organotypic cell cultures by automated image analysis. PLOS ONE. 9 (5), e96426(2014).

Access restricted. Please log in or start a trial to view this content.

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

151 3D

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。