Method Article
准确测量土壤表面上 5 mm 的温度和含水量可以增进我们对生物、化学和物理过程环境控制的理解。在这里,我们描述了一个使用土壤表面温度和水分传感器进行制造、校准和测量的协议。
量化土壤表面的温度和水分对于了解土壤表面生物群环境环境变化的反应至关重要。然而,在土壤表面,这些变量是高度动态的,标准传感器没有明确测量土壤轮廓上几毫米的温度或水分。本文介绍了制造简单、廉价的传感器的方法,这些传感器可同时测量土壤表面上 5 mm 的温度和湿度。除了传感器结构外,还介绍了质量控制步骤以及各种基板的校准步骤。传感器采用 E 型热电偶,通过测量传感器末端的两个镀金金属探头之间的电阻,在 5 mm 下测量温度和评估土壤湿度。此处介绍的方法可以更改,以自定义不同深度或基板的探头。这些传感器在各种环境中都有效,并经受了热带森林数月的暴雨和美国西南部沙漠的强烈太阳辐射。在全球变化实验中,土壤表面的加热、干燥和冻结。
环境传感器是评估、监控和了解生态系统动态的重要工具。温度和水分是土壤中生物过程的基本驱动力,影响土壤生物的活动和社区组成1,2。此外,温度和水分已被证明影响幼苗出现的时间和垃圾分解率3,4,5。在旱地生态系统中,未被血管植物覆盖的土壤表面往往覆盖着苔、地衣和蓝藻群落,称为生物土壤结壳(生物壳)(图1)。这些群落存在于土壤表面,很少能穿透几毫米深的土壤。生物土壤结壳能对土壤稳定、水渗透和蒸发率、反作用率、温度、养分循环和土壤-大气CO2交换影响7、8、9。反过来,对于某些系统,这些地表群落的活动可以支配整体土壤属性和各种过程的速率10。将测量明确聚焦在浅深度上的传感器可以帮助我们进一步了解表面温度和水分如何影响土壤表面生物群的播种、分解率和响应,以及许多其他生态系统功能。
土壤传感器技术的最新发展表明,空间明确的测量对于了解土壤表面11、12的生物过程非常重要。分析土壤水分的传统方法包括放置在土壤表面下方的传感器,并经常集成跨深度的测量。这些探测器记录的土壤水分有助于了解土壤生物的环境控制,但可能会错过土壤表面发生的许多细微差别。为了明确测量土壤顶部几毫米的含水量,韦伯等人最近研制出生物冻土探头(BWP),通过土壤表面的电导率测定土壤水分,深度为3毫米11。Tucker 等人将韦伯的传感器与 0 到 5 厘米的集成水分探头结合使用,证明了聚焦于土壤表面顶部几毫米的水分传感器的重要性。特别是,与生物壳群落活动高度相关的小降水事件没有登记0-50毫米(即5厘米)综合探头,只有BWPs12检测到。聚焦于顶部几毫米土壤的传感器对于测量水分事件至关重要,这些水分事件不够大,无法渗透到表面,但足以引起表面生物群的反应。
土壤表面温度是驱动生理过程的另一个重要环境因素。日土壤表面温度可能变化很大,特别是在未受沙带沙的土壤表面暴露于大量太阳辐射的植物间空间。此外,土壤表面的温度比土壤剖面13或空气14中较深的温度变化更大。例如,Tucker 等人显示,土壤表面温度的最大温度范围接近 60 °C (13-72 °C),时间仅为 24 小时。这些温度是使用插入土壤表面3毫米的热电偶测量的。同时,附近的温度探头50毫米深测量的范围只有30°C(22-52°C)在同一天12。明确测量土壤表面温度的热电偶在 50 mm 深度下比传感器变化大得多,因为表面土壤在夜间较冷 10°C,在一天中较热时温度为 20°C,相对于 50 mm 深值。
温度代表对生理过程的关键控制。例如,在实验室条件下恒定的土壤水分条件下,土壤的CO2损失会随着大多数生态系统2、15、16的温度升高而急剧增加。同样,来自旨在相对于对照提高地块温度的现场气候操纵研究数据显示,加热土壤释放的CO2比附近的未加热土壤多(至少在处理17、18的最初几年),生物结壳土壤对7、9的变暖表现出类似的反应。温度和水分已被证明是重要的环境变量和传感器,可以准确地捕获土壤表面的气候条件可以阐明它们如何影响生物体的生理过程在土壤表面11,12。
本文介绍了旨在测量温度和水分到土壤表面以下5毫米深度的传感器,为评估这些变量如何与冲浪生物群的生物反应相互作用和驱动生物反应提供了强大的动力。E 型热电偶由两种金属(铬和常数)组成,金属中的温度变化会产生不同的电压,由数据记录器记录。土壤水分传感器测量两个镀金金属爪之间的电阻。电阻受土壤含水量的影响,因为更多的水会增加电导率,从而降低爪子之间的电阻。根据Weber等人11号的设计,这些传感器测量土壤湿度到5毫米的深度,另外还包括一个热电偶来测量同一探头的温度。这些传感器通过单个探头,可精细地了解温度和水分动态在土壤表面的变化。这些探测器提供了无数的机会来探索生活在地表的生物体如何对其环境的变化作出反应。这些传感器的另一个好处是,它们相对简单且成本低廉,而且研究人员将很容易采用它们的使用。
以下协议详细介绍了构建传感器的材料和方法,包括将传感器连接到数据记录器的大纲。这些传感器使用市售记录器,但可以使用可连接到多路复用器的任何数据记录器。介绍了将传感器校准到感兴趣的基板的方法。
1. 制造传感器
2. 将传感器连接到数据记录器和多路复用器
注: 这些传感器必须与连接到数据记录器的多路复用器一起使用。此协议中的所有步骤都用于材料表中列出的数据记录器和多路复用器(其他数据记录器也可以工作)。在每个测量时,数据记录器都会打开与多路复用器的通信,而多路复用器又充当继电器,允许电流流向电阻率传感器。
3. 测试传感器
4. 校准传感器
注:本节介绍传感器输出与土壤湿度相关的过程。
评估土壤表面的微气候对于了解和预测那里发生的生物、化学和物理过程至关重要。这些探针为监测土壤剖面表层的微气候提供了强有力的机会,因此对评估土壤前几毫米内生物活动的价值。这些探测器被开发和改进,以评估对生物土壤地壳活动的控制,因为生物壳的温度和水分对于其功能2、8、10、12、15至关重要。然而,虽然这些探头是为旱地的光合土壤开发的,但在广泛的系统中实施这些探针,以及评估温度和水分如何随土壤深度剖面变化的潜力很大。例如,这些传感器已部署在热带森林变暖实验中,以确定气候变暖处理和气候自然变化如何相互作用,以确定土壤过程、温度和水分的变化。
然而,在实施土壤表面传感器之前,有一些关键的考虑因素。例如,必须开发校准曲线,将电阻单位转换为更常用的土壤湿度指标,如 GWC。土壤表面传感器测量西门子(1/欧姆)中金属爪和输出电导值(电阻的反向)之间的电阻。因此,必须实现从西门子到土壤水分的转换。土壤基板的一些化学和物理特性会影响西门子传感器的电导读数与土壤水分之间的关系。因此,进行基板特定的校准以将探头读数转换为土壤湿度值至关重要。显示了三个基板的校准数据,表明这些差异。
图 6描述了三个土壤基板中两个样品的干式校准数据,每个样品都有自己的探头。基底完全饱和,直到表面看到少量水。探头电阻和土壤重量每15分钟测量一次,直到所有样品都干燥。土壤质量随后被用来计算GWC。图 6显示了每个样本的电导率和 GWC 的回归。用于这些校准的基材包括波多黎各El Yunque国家森林试验田站收集的淤泥土壤(23%沙土、64%淤泥和13%粘土);在犹他州城堡谷附近收集的以青苔为主的生物壳;和细沙土(92%的沙,3%的淤泥,和5%的粘土)从实验加热地块附近的Moab,犹他州。
每种基材的探头电导率和土壤湿度变化都证明了对基板特定传感器校准的需求。例如,淤泥土样本的回归(图6a)与其他两种土壤基质不同。因此,将淤泥土的回归方程应用于苔类生物壳,反之亦然,将导致显著不同的值。另一方面,GWC与细沙土的探针电阻(图6c)和苔类生物壳(图6b)的关系相似。然而,细沙土不能容纳尽可能多的水,因为青苔,相应的经历了更快的干燥。由于基板内部存在差异,因此必须拥有足够大的样本大小,以产生精确的校准曲线,并为所有位点创建单独的校准曲线。
在实验环境中,这些土壤表面传感器用于评估美国犹他州Moab附近的气候操纵研究的处理效果。本研究使用红外灯在同一地点将地块的环境温度提高4°C,并采用Wertin等人17号描述的类似方法。图 7显示了 2018 年 5 月初发生的两次单独降雨事件的平均温度和来自加热和控制地块的 GWC。热化地块的平均气温始终高于控制图的平均温度(图7a)。在这两次降雨事件中,加热地块中的电阻率传感器记录的土壤湿度比对照组少,加热地块干燥得更快(图7b)。应该指出,温度升高会导致土壤电导率升高,必须占19。这些土壤表面传感器的温度和水分成分的敏感性使我们能够不仅观察气候变暖处理的温度差异,还能够观察它如何影响地块中的水分动态。
美国科罗拉多高原冻融条件下,利用这些土壤表面传感器对生物壳的水分可用性时间进行了分析,进一步研究了温度和水分的相互作用。传感器被放置在顶部5毫米的生物壳,主要由苔辛特里基亚罐组成,并在2018年1月和2月记录表面温度和水分。当温度低于 0 °C 时,苔面的湿气被冻结,传感器输出电导值对应于 0% GWC(图8)。然而,当温度超过0°C时,霜冻在苔面融化,液态水在电阻率传感器上记录。在这种情况下,温度和水分的并发测量显示了变量如何相互作用,从而可能影响土壤表面存在的生物体的生物过程。
图1:美国科罗拉多高原上生物裂化的间空间。在许多沙漠生态系统中,植物之间的空间通常覆盖着由地衣、苔丝和蓝藻组成的生物壳群落。两个土壤温度和水分传感器被放置在苔层生物壳的表面。请点击此处查看此图的较大版本。
图 2:剪切八爪端子条。镀金端子条面向顶部弯曲的爪子朝向远方。爪子编号为 1 到 8,从左侧开始,向右移动。Prongs 2、4 和 7 与黑色塑料底部齐平。3、5 和 6 的爪子在黑色塑料下方 5 mm 处切割。P容 3 可稳定电弧焊接热电偶导线,而电阻在 5 和 6 之间测量。这些功能作为土壤水分传感器。爪子1和8在土壤中充当固定器。请点击此处查看此图的较大版本。
图 3:已完成的传感器头。修改后的传感器头和热电偶电缆用液体电胶带覆盖。保持爪子 5 和 6(水分传感器)清洁且不涂有液体电气胶带,以确保没有影响电阻测量的污染,这一点很重要。请点击此处查看此图的较大版本。
图 4:校准传感器头。四爪端子条焊接到导线上,使其朝向远离经过改进的传感器头。湿气密封热收缩固定在端子条附近,以防止导线之间的串扰。请点击此处查看此图的较大版本。
图5:校准容器和传感器头。四爪端子条被贴在容器上,并朝向,以便它可以轻松地连接到双插接字条。这种放置允许将传感器头放入切割狭缝中,并固定在感兴趣的基板上。请点击此处查看此图的较大版本。
图6:三个土壤基板的传感器校准。通过测量基材干燥过程中的土壤质量来确定的计算重力含水量 (GWC) 百分比与探头的土壤传感器电导值(在 Siemens 中测量)进行比较。所示数据来自三个不同的土壤基质中的两个样本。土壤基质是 (a) 淤泥土, (b) 苔生物壳, 和 (c) 细沙土.(a) GWC 和以淤泥为主的土壤中的电导值之间的关系最好用功率回归表示。(b) 观察到GWC和传感器电导的强线性关系,这种生物结块以苔丝辛特里基亚锥体为主。(c) 线性回归最能代表在细沙土壤中GWC和传感器电导测量之间的关系。在 GWC 值较高时,电导值与校准曲线不同,表明当土壤饱和时传感器的潜在限制。请点击此处查看此图的较大版本。
图7:温度和重力含水量与现场红外暖化处理。在 4 天内,在 5 个加热图和 5 个控制图中以 10 分钟间隔记录每小时平均表面温度和 GWC。数据来自美国美国科罗拉多高原半干旱草原生态系统的全球变化实验。数据显示,土壤表面传感器捕获了处理效果。(a) 在加热地块中,土壤表面的平均温度一直较高.(b) 在GWC值中也很明显变暖的影响,表明加热的地块土壤保持更快的干燥时间。请点击此处查看此图的较大版本。
图8:霜冻期间苔生物壳温度和重力含水量。从 2018 年 1 月 24 日上午 9:50 到 2018 年 1 月 25 日上午 11:20,以 10 分钟间隔记录Syntrichia Caninervis苔类生物壳的四个副本的平均表面温度和 GWC。夜间时间表示在灰色阴影区域和未阴影区域的白天时间。当水以霜的形式冻结在青苔表面时,传感器没有测量电导。因此,GWC 为 0。夜幕降临后不久,土壤温度降至0°C以下,出现冰冻情况。日出后不久,当温度上升到0°C以上,当霜冻融化,传感器检测到液态水时,解冻发生。这些结果证明了传感器在区分液态水和冰方面的有效性,这可能对一系列生物过程产生重要影响。请点击此处查看此图的较大版本。
土壤表面温度和水分探头是分析土壤表面温度和含水量的有效工具。除了韦伯等人11开发的生物壳湿度探头(BWP)外,常见的土壤温度和水分传感器没有明确测量土壤表面顶部几毫米处的环境变量。在开发时,BWP只估计地表的土壤湿度,而不是温度20。以最初的BWP设计为指导,本手稿中描述的探头被开发出来,以同时测量温度和水分,以评估这些环境变量如何相互作用,以及土壤表面的生物、化学和物理过程。
有许多注意事项可确保这些探头的最佳运行。在构建传感器时,请务必注意不要穿过内护套并暴露底层金属导线。这可能导致导线之间的电导和串扰发生变化。在同一环境中测试每个探头的热电偶和电阻率传感器也至关重要,以确认它们结构正确,并且读数的变化是由于土壤基板的物理和化学差异造成的。测量。在校准过程中,足够大的电阻样本数和 GWC 校准对于正确解释土壤或生物壳基板的变化至关重要。此外,最好测试相同的探头和基板组合两次,从湿到干,因为这些探头通常由于电解或腐蚀而随时间而"漂移"。此外,在校准过程中,必须使用深度足以容纳探头长度(即 6 至 7 mm)的浅基板样品,以便测量的水重量主要来自导电测量区域的水(探头之间和周围)。这可确保土壤中水质量的变化与探头电阻测量的变化直接相关。最后,在现场部署这些探头时,将探头正确固定到土壤表面(例如,具有不导电花园桩),这将限制电导测量的干扰,但可以确保传感器不移动位置。"降低长期测量的质量。
还必须注意这些传感器的一些限制。由于电阻率探头只有 5 mm 长,其测量可能会受到基板中大量充满空气孔隙空间的强烈影响。探头沿线的大气隙会降低基板的连接性,通常会导致测量的电导率降低,因此估计的含水量较低,这可能不能反映较大尺度上的实际土壤水分。同样,土壤的化学成分也会影响土壤水分读数。较高的盐度将提高电导率,并导致更高的西门子值21。这两个问题都应通过适当的基板特定校准来解决。然而,一些土壤可能保持化学差异或具有较大的孔隙空间结构,这可能使它们对这些传感器的环境较差。温度也影响土壤的导电性,因此必须考虑15。将来,应对这些传感器进行温度校准,以确定温度如何改变测量基板的电阻。
与韦伯等人11开发的生物壳湿度探头一样,这些传感器校准表明,在中等含水量下,电阻测量是可靠的,但在非常高和低含水量时,它们会遇到一些异常(图6)。此外,在干式校准期间,当基板样品中仍有一些水时,电阻值偶尔会为零。这可能是由于校准容器中的基板量略大于传感器测量的区域。如果电阻率区域外存在水,则传感器读数为零,而基板仍有湿气。注意减小基板尺寸,同时不影响电阻测量。随着含水量的增加,基板内的电阻值会降低,从而导致西门子输出增加。然而,在最高含水量时,电阻值随含水量的增加而增加。这导致校准数据中的"挂钩",如图1C所示。此挂钩存在于用于校准的每个基材中,但在细沙土中最为突出(图 6)。Weber等人11号指出,高含水量增加的一个潜在原因是额外的水稀释饱和土壤中的离子,从而增加电阻。
这些传感器目前依赖于使用现有的多路复用器和数据记录器技术。多路复用器允许传感器"关闭",并且仅在编程时间向传感器发送电流。这样可以防止土壤水分传感器端子腐蚀。其他电子公司为探头提供数据记录仪和多路复用器替代品,可编程电路板和计算机也可以用于土壤温度和湿度传感器的无线设计,这可以代表令人兴奋的进步。
设计和构建传感器使研究人员能够定制探头。可以操纵爪子的长度和方向,以便更好地评估不同介质或不同深度的水分。可订购定制接线,以允许使用来自同一电缆的多个传感器头进行设计。这些传感器增加了廉价的数据记录和多路复用器选项,为研究人员提供了一个廉价且易于访问的选项,用于测量土壤表面的温度和土壤湿度。这包括测量难以捕获的事件,如霜冻和露水形成(图8),以及实验处理效果,如变暖(图7)。本文为构建同时测量温度和湿度的土壤表面传感器提供了分步指南,任何有兴趣评估生物壳群落的环境和许多其他土壤类型的表面层的人都可以使用和提炼该传感器。
作者没有什么可透露的。
我们感谢罗宾·雷博尔德精心的电弧焊接和卡拉·劳里亚在校准过程中的精度。我们感谢史蒂夫·菲克博士和三位匿名评论者对这份手稿的前稿的有益评论。这项工作得到了美国地质调查局土地变化科学项目和美国能源部科学办公室、生物与环境研究办公室陆地生态系统科学计划(89243018SSC000017和DESC-0008168)的支持。BW的工作得到了德国研究基金会(Grants WE2393/2-1,2-2),马克斯·普朗克协会和格拉茨大学的支持。任何使用贸易、公司名称或产品名称仅供描述性目的,并不意味着美国政府的认可。
Name | Company | Catalog Number | Comments |
Single sensor audio cable | alliedelec.com | Allied Stock #: 70004848 | Cable; 1Pr; 22AWG; 7x30; TC; PP ins; Foil; Black PVC jkt; CMR |
Double sensor audio cable | alliedelec.com | Allied Stock #: 70004635 | Cable; 2Pr; 22AWG; 7x30; TC; PP ins; Foil; Black LSZH jkt; CMG-LS |
Thermocouple cable | Omega.com | Part #: TT-E-24-TWSH-SLE-(Desired length) | Type E, 24 ga, PFA (teflon coated), twisted shielded, special limits of error |
Eight prong terminal strip | Samtec.com | MTSW-108-21-G-S-1130-RA | |
Four prong terminal strip | Samtec.com | MTSW-104-21-G-S-1130-RA | |
Two prong socket strip | Samtec.com | SSW-102-03-G-S | |
0.13" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K51 | |
0.25" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K53 | |
0.38" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K54 | |
0.5" moisture-seal heat shrink tubing | McMaster.com | Part #: 7861K55 | |
Liquid electrical tape | McMaster.com | Part #: 76425A23 | |
Metal film resistor | Newark.com | Part #: RN55C1001BB14 | |
Voltage divider resistor | Newark.com | Part #: 83F1210 | |
16- or 32-Channel Relay Multiplexer | campbellsci.com | AM16/32B | This relay multiplexer is critical for the sensors to function correctly |
CR1000X Measurement and Control Datalogger | campbellsci.com | CR1000X |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。