登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 研究方案
  • 讨论
  • 材料
  • 参考文献
  • 转载和许可

摘要

在微观和纳米尺度成为一个现实更有利的技术操作和悬浮颗粒的液体,交流电学,继续发展。在这里,我们讨论交流电学后面的物理,如何制造这些设备,以及如何解释实验观察。

摘要

交流电学领域正在迅速增长,因为它能够执行动态流体和粒子操纵的微观和纳米尺度,这是必不可少的单晶片上实验室应用。交流电动现象,使用电场来产生力量,液体或悬浮微粒(包括介质或生物材料制成的)和行为,导致他们以惊人的方式1, 2。在一个单一的通道,交流电学可以完成许多重要的芯片业务,如活跃的微混,颗粒分离,颗粒定位和微淅沥。单一设备可以完成这些操作简单的调整操作参数,如施加电压的频率或幅度。合适的电场可以很容易地集成到微微电极。它是在这一领域的巨大增长,交流电学可能会产生深远的影响对医疗诊断,环境监测和国土安全部7 3-5 。

在一般情况下,有三个交流电动现象(AC电渗,介和交流电热效应)与每一个独特的运行参数的依赖。这些运行参数的变化可能会导致一个现象,成为在另一个中占主导地位,从而改变了粒子或液体的行为。

这是很难预测,由于复杂的物理基础交流电学,粒子和流体的行为。这是本刊物的目的,解释物理和澄清粒子和流体的行为。我们的分析还包括如何制造生成的电极结构,以及如何解释一个广泛使用几种流行的设备设计的实验观察。此视频文章将帮助科学家和工程师了解这些现象,并可能会鼓励他们开始在他们的研究中使用的交流电学。

研究方案

在玻璃基板上制作的铬/金电极

1A部分:湿蚀刻方法

*对于最高质量的设备,制造工艺应在洁净室环境或层流罩下使灰尘和其他污染物不会影响格局。

  1. 2英寸4英寸的载玻片放置在加热(80 ° C)食人鱼30分钟,以去除污染物(尤其是有机的),然后在DI冲洗溶液(5:7 H 2 O 2:H 2 SO 4)水,并用压缩空气吹干。
  2. 与电子束蒸发器的基板上沉积20 nm的铬和200 nm的金。
  3. 希普利1827正光阻沉积在玻片与spincoater(3000转,1000转/ s的坡道,30秒的旋转时间)。
  4. 基板,然后在100 ° C烘烤2分钟的软
  5. 图案的面具被转移到光致抗蚀剂与接触紫外线的8.4秒206兆焦耳/厘米2的总暴露。
  6. 光致抗蚀剂Microposit MF 351:水(1:3),充分搅拌,然后通过一个DI水冲洗30秒。
  7. 后用显微镜检查,以确保良好的发展,基板,然后在凹蚀刻和铬蚀刻剂蚀刻分别为15秒和30秒与DI之间和之后洗。

第1B部分:替代协议 - 升空方法

  1. 2英寸4英寸的载玻片放置在加热(80℃)食人鱼的解决方案(5:7 H 2 O 2:H 2 SO 4)30分钟,以去除污染物(特别是有机),然后在去离子水冲洗干燥压缩空气。
  2. Futurrex NR - 7 1500坪的负光阻spincoated基板上(2000转,1000转/ s的坡道,40秒的旋转时间)。
  3. 基板在150 ° C软烤1分钟
  4. 联系紫外线照射21秒(400兆焦耳/厘米2)。
  5. 衬底,然后放在一个热点板块,在100℃,1分钟完成的烤版的一步。
  6. 发展是6秒Futurrex RD6开发。
  7. 铬30纳米和200纳米金,然后用电子束蒸发沉积到基板。
  8. 升空是由放置在基板丙酮超声波清洗,直到黄金明显是删除,并用显微镜观察证实。

实验装置

第2部分:微注射和观察

  1. PDMS的渠道(制造在别处)连接直接粘附到玻璃基板上制造电极,使通道传递。
  2. 约10 7毫升 聚苯乙烯微球悬浮在要么去离子水(0.0002 S / M)或KCl溶液(0.05 S / M)。然后,他们注入微球溶液中放置油管的进气口和应用吸用注射器出口。
  3. 加载的设备,然后放在显微镜舞台上,并连接到一个信号发生器。
  4. 频率设定(1 kHz到1 MHz)和电压设置(1或2 V)的时间当然是应用,而用显微镜观察。

注意:重​​要的是,不提高电压过高或过低或电解水会发生的频率,以获得。出现这种情况的确切的电压或频率设置都依赖于电极设计。我们的实验室指南,以避免上述8频率低于500赫兹或电压V。

讨论

在这段视频中,我们都表现出了各种各样的交流电动现象所造成的粒子和流体操纵行为。产生这些现象的电极容易制造,可以很容易地集成到许多其他系统。正如我们已经表明,有众多的应用程序使用交流电学。这些设备的多功能性,以及操纵的快速性,使他们特别有吸引力。由于医疗保健和其他行业开始接受单芯片上实验室系统,我们可能会看到这些设备的一个组成部分纳入交流电学。

材料

Material NameTypeCompanyCatalogue NumberComment
NameCompanyCatalog NumberComments
2" by 4" Pyrex Glass SlideSubstrate  Pyrex 7740
chrome maskmaterial  This photomask will have the microelectrode patterns on them and can be ordered from a variety of microfabrication centers.
PDMS Microchannelsmaterial  These may be fabricated and used in-house or a simple microscope slide will suffice.
Hydrogen Peroxide 30%ReagentFisher Scientific7722-84-1Certified ACS, Fisher Scientific
Sulfuric AcidReagentFisher ScientificA300-212Certified ACS Plus
Acetone Electronic GradeReagentFisher ScientificA946-4 
Shipley 1827 Positive PhotoresistReagentMicrochem Inc.  
Shipley 351 DeveloperReagentMicrochem Inc.  
Gold EtchantReagentTransene Company, Inc.Type TFA 
Chrome Photomask EtchantReagentCyantek CorporationCR-7S 
NR-7 1500 PY Negative ResistReagentFuturrex  
RD6 DeveloperReagentFuturrex  

参考文献

  1. Ramos, A., et al. AC Electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics. 31, 2338-2353 (1998).
  2. Morgan, H. y. w. e. l., Green, N. G. AC Electrokinetics: colloids and nanoparticles. , (2002).
  3. Toner, M., Irimia, D. Blood-on-a-chip. Annual Review of Biomedical Engineering. 2005, 77-103 (2005).
  4. Ahn, C. H., Choi, J. -. W., Beaucage, G., Nevin, J. H., Lee, J. -. B., Puntambekar, A., Lee, J. Y. Disposable smart lab on a chip for point of care clinical diagnostics. 282, 399-401 (1998).
  5. Vespoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis. 23, 677-712 (2002).
  6. Rajaraman, S., et al. Rapid, low cost microfabrication technologies toward realization of devices for dielectrophoretic manipulation of particles and nanowires. Sensors and Actuators B: Chemical. 114, 392-401 (2006).
  7. Ali, Z. Lab-on-a-chip for terrorist weapons management. Measurement and Control. 38, 87-91 (2005).
  8. Voldman, J. o. e. l., Rosenthal, A. d. a. m. Dielectrophoretic Traps for Single-particle Patterning. Biophysical Journal. 88, 2193-2205 (2005).
  9. Ramachandran, T. R., Baur, C., Bugacov, A., Madhukar, A., Koel, B. E., Requicha, A., Gazen, C. Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope. Nanotechnology. 9, 237-245 (1998).
  10. Sigurdson, M. a. r. i. n., Wang, D., Meinhart, C. D. Electrothermal stirring for heterogeneous immunoassays. Lab Chip. 5, 1366-1373 (2005).
  11. Urbanski, J. o. h. n. . P. a. u. l., Levitan, J. e. r. e. m. y. A., Bazant, M. a. r. t. i. n. Z., Thorsen, T. Fast ac electro-osmotic micropumps with non-planar electrodes. Appl. Phys. Lett. 89, 143508 (2006).
  12. Fatoyinbo, H. O., et al. An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications. Biosens Bioelectron. 23, 225-232 (2007).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

17 AC

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。