The Lewis structure of a nitrite anion (NO2−) may actually be drawn in two different ways, distinguished by the locations of the N-O and N=O bonds.
If nitrite ions do indeed contain a single and a double bond, the two bond lengths are expected to be different. A double bond between two atoms is shorter (and stronger) than a single bond between the same two atoms. However, experiments show that both N–O bonds in NO2− have the same strength and length, and are identical in all other properties. It is not possible to write a single Lewis structure for NO2− in which nitrogen has an octet and both bonds are equivalent.
Instead, the concept of resonance is used: if two or more Lewis structures with the same arrangement of atoms can be written for a molecule or ion, the actual distribution of electrons is an average of that shown by the various Lewis structures. The actual distribution of electrons in each of the nitrogen-oxygen bonds in NO2− is the average of a double bond and a single bond.
The individual Lewis structures are called resonance forms. The actual electronic structure of the molecule (the average of the resonance forms) is called a resonance hybrid of the individual resonance forms. A double-headed arrow between Lewis structures indicates that they are resonance forms.
The carbonate anion, CO32−, provides a second example of resonance.
Always remember that a molecule described as a resonance hybrid never possesses an electronic structure described by either resonance form. It does not fluctuate between resonance forms; rather, the actual electronic structure is always the average of that shown by all resonance forms.
George Wheland, one of the pioneers of resonance theory, used a historical analogy to describe the relationship between resonance forms and resonance hybrids. A medieval traveler, having never before seen a rhinoceros, described it as a hybrid of a dragon and a unicorn because it had many properties in common with both. Just as a rhinoceros is neither a dragon sometimes nor a unicorn at other times, a resonance hybrid is neither of its resonance forms at any given time.
Like a rhinoceros, it is a real entity that experimental evidence has shown to exist. It has some characteristics in common with its resonance forms, but the resonance forms themselves are convenient, imaginary images (like the unicorn and the dragon).
This text is adapted from Openstax, Chemistry 2e, Section 7.4: Formal Charges and Resonance.
From Chapter 9:
Now Playing
Chemical Bonding: Basic Concepts
43.7K Views
Chemical Bonding: Basic Concepts
69.8K Views
Chemical Bonding: Basic Concepts
53.8K Views
Chemical Bonding: Basic Concepts
33.9K Views
Chemical Bonding: Basic Concepts
20.1K Views
Chemical Bonding: Basic Concepts
22.6K Views
Chemical Bonding: Basic Concepts
38.9K Views
Chemical Bonding: Basic Concepts
58.2K Views
Chemical Bonding: Basic Concepts
26.6K Views
Chemical Bonding: Basic Concepts
30.9K Views
Chemical Bonding: Basic Concepts
30.5K Views
Chemical Bonding: Basic Concepts
25.1K Views
Chemical Bonding: Basic Concepts
23.5K Views
Chemical Bonding: Basic Concepts
40.0K Views
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved