Sign In

Microtubules are dynamic structures that undergo continuous assembly and disassembly. They originate from specialized multi-protein complexes known as microtubule organizing centers or MTOCs. Within the MTOC, the point of origin of the microtubule is known as the minus end, while the end radiating outward is the plus end. Microtubules serve two primary functions — the organization of spindle complexes to separate sister chromatids during mitotic or meiotic cell division and the formation of locomotory appendages, like cilia and flagella.

MTOCs are found in both prokaryotic and eukaryotic organisms. However, some lower eukaryotes, like most fungi, lack organized MTOCs. Instead, they have organized centrosomes consisting of centrioles and the pericentriolar material. In animal cells, the structure and location of MTOCs, vary within different cell types depending on the function of the microtubules.

Microtubule Nucleation

The nucleation of microtubules occurs within the MTOCs, i.e., the centrioles, where different γ-tubulin complex proteins interact with γ-tubulin subunits to form the γ-tubulin-ring complex (γ-TRC). Nucleation is initiated when the α-tubulin subunit of the αβ-tubulin heterodimer attaches to the γ-TRC. Several intrinsic and extrinsic factors influence microtubule nucleation. Intrinsic factors like the α- and β-tubulins isotype incorporated; the concentration of free αβ-tubulin heterodimers, the post-translational modifications, and the microtubule-associated proteins (MAPs) affect the microtubule nucleation dynamics. Extrinsic factors like temperature, pH, and microtubule interfering drugs are also responsible for the rate of microtubule polymerization or depolymerization.

Tags
Microtubule FormationMicrotubulesMTOCsMinus EndPlus EndSpindle ComplexesSister ChromatidsMitotic Cell DivisionMeiotic Cell DivisionLocomotory AppendagesCiliaFlagellaProkaryotic OrganismsEukaryotic OrganismsCentrosomesCentriolesPericentriolar MaterialNucleation Of Microtubulestubulin Complex Proteinstubulin Subunitstubulin Subunits

From Chapter 26:

article

Now Playing

26.3 : Microtubule Formation

The Cytoskeleton II: Microtubules and Intermediate Filaments

5.1K Views

article

26.1 : Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

6.4K Views

article

26.2 : Microtubule Instability

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.8K Views

article

26.4 : Microtubule Associated Proteins (MAPs)

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Views

article

26.5 : Destabilization of Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.4K Views

article

26.6 : Microtubule Associated Motor Proteins

The Cytoskeleton II: Microtubules and Intermediate Filaments

7.0K Views

article

26.7 : The Movement of Organelles and Vesicles

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.8K Views

article

26.8 : Assembly of Complex Microtubule Structures

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.7K Views

article

26.9 : Microtubules in Cell Motility

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.9K Views

article

26.10 : Mechanism of Ciliary Motion

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.4K Views

article

26.11 : Microtubules in Signaling

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.6K Views

article

26.12 : Drugs that Stabilize Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Views

article

26.13 : Drugs that Destabilize Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.8K Views

article

26.14 : The Structure of Intermediate Filaments

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.4K Views

article

26.15 : Types of Intermediate Filaments

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.2K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved