Sign In

15.13 : Types of Damping

If the amount of damping in a system is gradually increased, the period and frequency start to become affected because damping opposes, and hence slows, the back and forth motion (the net force is smaller in both directions). If there is a very large amount of damping, the system does not even oscillate; instead, it slowly moves toward equilibrium. In brief, an overdamped system moves slowly towards equilibrium, whereas an underdamped system moves quickly to equilibrium but will oscillate about the equilibrium point as it does so. In contrast, a critically damped system moves as quickly as possible towards equilibrium without oscillating about the equilibrium point.

Generally, critical damping is often desired because such a system not only returns to equilibrium rapidly, but remains at equilibrium too. In addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the shortest time possible, without overshooting or oscillating about the new position. For example, when a person stands on a bathroom scale that has a needle gauge, the needle moves to its equilibrium position without oscillating. It would be quite inconvenient if the needle oscillated about the new equilibrium position for a long time before settling. Damping forces can vary greatly in character. Friction, for example, is sometimes independent of velocity. However, many damping forces depend on velocity—sometimes in complex ways and sometimes simply being proportional to velocity.

This text is adapted from Openstax, College Physics, Section 16.7: Damped Harmonic Motion and Openstax, University Physics Volume 1, Section 15.4: Damped Oscillations.

Tags
DampingOverdamped SystemUnderdamped SystemCritically Damped SystemEquilibriumOscillationCritical DampingDamping ForcesFrictionHarmonic MotionNet ForceVelocity Dependence

From Chapter 15:

article

Now Playing

15.13 : Types of Damping

Oscillations

6.0K Views

article

15.1 : Simple Harmonic Motion

Oscillations

7.6K Views

article

15.2 : Characteristics of Simple Harmonic Motion

Oscillations

9.4K Views

article

15.3 : Oscillations about an Equilibrium Position

Oscillations

4.8K Views

article

15.4 : Energy in Simple Harmonic Motion

Oscillations

5.8K Views

article

15.5 : Frequency of Spring-Mass System

Oscillations

4.1K Views

article

15.6 : Simple Harmonic Motion and Uniform Circular Motion

Oscillations

3.9K Views

article

15.7 : Problem Solving: Energy in Simple Harmonic Motion

Oscillations

968 Views

article

15.8 : Simple Pendulum

Oscillations

4.1K Views

article

15.9 : Torsional Pendulum

Oscillations

4.8K Views

article

15.10 : Physical Pendulum

Oscillations

1.4K Views

article

15.11 : Measuring Acceleration Due to Gravity

Oscillations

333 Views

article

15.12 : Damped Oscillations

Oscillations

5.2K Views

article

15.14 : Forced Oscillations

Oscillations

5.1K Views

article

15.15 : Concept of Resonance and its Characteristics

Oscillations

3.8K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved