该CMRI方案有助于对小鼠心脏功能参数进行非侵入性体内定量,包括射血分数,E比A比,全局纵向应变和血流动力学力。所有功能性心脏参数均可通过单次心脏 MRI 检查获得,无需复杂的标记或密集扫描即可量化强度或血流动力学力。有证据表明,全球纵向劳损和血流动力学会对心力衰竭的早期诊断标志物产生影响。
首先,将鼠标放在鼠标支架上的仰卧位置。将鼠标的门牙钩在鼠标底座上的咬合杆中,并调整鼻锥以正确安装。目视检查呼吸是否稳定,低于每分钟100次呼吸。
使用凡士林将直肠温度探头插入直肠温度探头,并将温度探头的光纤电缆粘在鼠标底座上。将呼吸球囊放在鼠标的下腹部,并用胶带固定。将两根心电图电极针皮下插入前爪高度的胸部,并轻轻地用胶带将其固定下来以防止移动。
将射频或射频线圈放在鼠标上,然后连接线圈电缆。然后,将底座放入磁铁孔中。最后,检查心电图信号是否仍然稳定。
在心电图和呼吸信号监测软件中调整心电图和呼吸门控参数,以便在R峰处生成触发点,因为信号仅在呼吸信号的平坦部分变为绿色。要最大限度地减少 ECG 门控误差,请将消隐周期设置为比 R-R 间隔短 10 到 15 毫秒,并在整个会话期间不断更新。根据初始侦察,执行门控单帧梯度回波侦察扫描,在三个正交方向上使用五个切片。
为此,将成堆的切片放置在心脏的大致位置。执行门控单片进行多切片短轴侦察扫描。为此,使用先前的梯度回波侦察仪将四到五个切片定位在左心室中段位置,垂直于心脏的长轴,以找到短轴视图的初始估计值。
然后,在矢状图中,检查切片是否垂直于长轴。对于后续扫描,调整心脏帧或结束帧的数量,使结束帧和重复时间的乘积约为R-R间隔的60%至70%。执行门控单片梯度回波扫描以生成长轴2室侦察。
为此,使用短轴和初始梯度回波侦察扫描来定位垂直于短轴视图的切片,平行于左心室和右心室之间的连接点。将此切片移动到左心室的中间,并检查梯度回波侦察器的日冕图像,如果切片与左心室长轴对齐,使其通过顶点放置。或形成另一个门控单片梯度回波扫描以生成4腔侦察扫描。
为此,放置一个垂直于2腔侦察器扫描的切片,并对齐到长轴的中心,使切片穿过二尖瓣和顶点。在短轴视图中,调整切片,使其平行于后脑室壁和前壁以及两个肌之间放置。检查切片是否在整个心脏周期中保持在心室中心。
对于收缩功能,测量执行门控顺序多切片,短轴梯度回波扫描。为此,在心脏中心的2腔和4室视图中放置垂直于左心室长轴的中心室切片,并增加切片数量以覆盖心脏从基部到顶点。对于以下回顾性门控扫描,请关闭所有前瞻性心脏和呼吸门控功能。
记下每次回顾性门控扫描前后的心脏和呼吸频率,并将这些值用于以后的重建目的。在短轴上进行三次连续单片回顾性门控梯度回波扫描,以量化E'A'比率,以及2腔和4腔视图,这是量化心肌应变和血流动力学力值所必需的。如果 2 腔和 4 腔侦察仪方向不理想,请在执行 2 腔和 4 腔扫描之前调整方向。
最后,在3腔视图中执行回顾性门控,单片梯度回波扫描。为此,放置一个垂直于心室中短轴视图的切片,并将切片旋转 45 度,从前壁传递到最靠近后壁的肌。检查基底短轴切片,查看切片是否穿过二尖瓣和主动脉瓣。
检查长轴 4 腔视图以确定切片是否正在通过顶点。打开回顾性重建软件,并加载与回顾性门控MRI扫描相对应的原始数据文件。检查原始导航器信号,并注意较高的信号峰值表示呼吸频率,较低的信号峰值表示心率。
此外,在每次扫描期间,检查自动检测到的心率是否对应于观察到的值的 10%。如果没有,请手动调整这些值,因为自动检测失败。按过滤器执行导航器分析,将心脏导航器与呼吸导航器分开。
将 CINE 帧数设置为 32,然后按排序 k 空格键。为压缩感应正则化选择适当的设置,然后按"重建"。重建完成后,预览CINE电影以评估重建。
导出 DICOM 图像,以便使用导出 DCM 进行进一步分析。对于左心室的体积评估,请选择多切片短轴扫描图像,并将其加载到插件中以进行体积测量。使用轮廓工具分割收缩末期和舒张末期框架中的心内膜心肌边界。
对于舒张测量,请选择中心室短轴CINE图像并将其加载到插件中以进行体积测量。使用轮廓工具分割所有框架的心内膜边界。比较相邻帧的分割以及生成的体积时间曲线,以确保分割在整个心脏周期中的平稳过渡。
请注意不同的 E 和 A 填充阶段。导出左心室心内膜心肌体积和相应的时间戳,并将这些值加载到补充材料中提供的定制脚本中以计算E'A'比率。对于应变和血流动力学力计算,请选择 2 腔、3 腔和 4 腔长轴 CINE 图像,并将其加载到插件中以进行体积测量。
使用轮廓工具分割所有三个方向上所有框架的心内膜边界。比较相邻帧的分割,以确保在整个心脏周期中分割的平稳过渡。在插件中绘制轮廓以进行体积测量后,运行插件进行应变和血流动力学力分析。
将每个采集的数据集分配给 2 腔、3 腔和 4 腔视图的相应标签,并执行应变分析。对于血流动力学力分析,绘制舒张末期框架处所有三个方向的二尖瓣直径,并在 3 腔长轴图像中绘制主动脉的直径。图中显示了使用定制的后处理软件对回顾性门控扫描进行具有代表性的高帧率重建。
从得到的图像中,确定了心脏周期内的体积时间曲线以及相应的一阶导数曲线,分别用于计算收缩期和舒张功能参数。使用图像分析软件分析两通道,三通道和四通道视图CINE图像,以确定心内膜整体纵向应变或心肌周期中的GLS变化以及相应的GLS值,作为心肌劳损的测量。对于每只动物,也可以产生血流动力学力时间曲线,该时间曲线遵循一致的正负峰模式,代表心脏周期中血流动力学力的大小和方向。
总结了所有结局参数的描述性结果。心电图和呼吸信号监测软件始终如一地检测R峰至关重要。否则,触发效果欠佳,可能会增加扫描时间并降低图像质量。
为了在图像中实现心脏的最佳质量,重要的是在总成像时间、心脏框架数量和重建过程中的正则化程度之间找到最佳权衡。