Here, we describe a phenotypic assay applicable to the High-throughput/High-content screens of small-interfering synthetic RNA (siRNA), chemical compound, and Mycobacterium tuberculosis mutant libraries. This method relies on the detection of fluorescently labeled Mycobacterium tuberculosis within fluorescently labeled host cell using automated confocal microscopy.
This manuscript provides a technical procedure that can be used to characterize C1498 cell cultures in vitro and the acute leukemia induced in mice after their injection. Phenotypic and functional analyses are performed using flow cytometry, immunofluorescence microscopy, cytochemistry and May-Grünwald Giemsa staining.
Phospholipid fatty acids provide information about the structure of soil microbial communities. We present methods for extraction from soil samples with a single-phase chloroform mixture, fractionation of extracted lipids using solid phase extraction columns, and methanolysis to produce fatty acid methyl esters, which are analyzed by capillary gas chromatography.
BLISS, a dual labeling protocol for studying lignification dynamics, was developed. Using synthetic monolignol reporters and a sequential combination of SPAAC and CuAAC bioorthogonal click reactions, this methodology paves the way to in-depth analysis of the factors that regulate the biogenesis of lignins in planta.
This protocol describes high-throughput plasmid transfection of mammalian cells in a 384-well plate using acoustic droplet ejection technology. The time-consuming, error-prone DNA dispensing and multiplexing, but also the transfection reagent dispensing, are software-driven and performed by a nanodispenser device. The cells are then seeded in these prefilled wells.
This protocol describes an original setup combining spectral and fluorescence lifetime measurements to evaluate Förster resonance energy transfer (FRET) between rhodamine-based fluorescent probes and lignin polymer directly in thick plant sections.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten