Anmelden

The volume occupied by one mole of a substance is its molar volume. The ideal gas law, PV = nRT,  suggests that the volume of a given quantity of gas and the number of moles in a given volume of gas vary with changes in pressure and temperature. At standard temperature and pressure, or STP (273.15 K and 1 atm), one mole of an ideal gas (regardless of its identity) has a volume of about 22.4 L — this is referred to as the standard molar volume.

For example, one mole each of hydrogen, oxygen, argon, or carbon dioxide occupies 22.4 liters at STP. This implies that 0.5 moles of any gas at STP occupies a volume of 11.2 L, and similarly, 2 moles of any gas at STP occupies a volume of 44.8 L.

The ideal gas law is universal, relating the pressure, volume, number of moles, and temperature of a gas regardless of the chemical identity of the gas:

Eq1

The density d of a gas, on the other hand, is determined by its identity. Density is the ratio of mass over volume. Rearranging the ideal gas equation to isolate V and substituting into the density equation yields:

Eq2

The ratio m/n that is, mass over moles, is the definition of molar mass, M:

Eq3

The density equation can then be written as

Eq4

This equation tells us that gas density is directly proportional to the pressure and molar mass, and inversely proportional to the temperature. For example, CO2 (molar mass = 44 g/mol) is heavier than N2 (molar mass = 28 g/mol) or O2 (molar mass = 32 g/mol), and is therefore denser than air. For this reason, CO2 released from a CO2 fire extinguisher blankets a fire, preventing O2 from reaching the combustible material. The phenomenon of the lifting of hot air balloons depends on the relationship that gases of equal molar masses (such as air) have lower densities at higher temperatures, and therefore hot air balloons can float.

This text is adapted from Openstax, Chemistry 2e, Section 9.3: Stoichiometry of Gaseous Substances, Mixtures, and Reactions.

Tags

JoVE CoreJoVE Core Chemistry Chapter 5JoVE Core Chemistry Lesson 1037

Aus Kapitel 5:

article

Now Playing

5.3 : Anwendungen der thermischen Zustandsgleichung idealer Gase Molmasse, Dichte und Volumen

Gase

55.7K Ansichten

article

5.1 : Druck und Druckmessung

Gase

35.0K Ansichten

article

5.2 : Gasgesetze

Gase

64.7K Ansichten

article

5.4 : Gasgemisch - Daltons Gesetz zum Partialdruck

Gase

38.6K Ansichten

article

5.5 : Chemische Stöchiometrie und Gase

Gase

24.1K Ansichten

article

5.6 : Kinetische molekulare Theorie: Grundlegende Postulate

Gase

33.0K Ansichten

article

5.7 : Kinetische Molekulartheorie und die Gasgesetze

Gase

31.9K Ansichten

article

5.8 : Teilchengeschwindigkeit und kinetische Energie

Gase

26.9K Ansichten

article

5.9 : Effusion und Diffusion

Gase

28.3K Ansichten

article

5.10 : Reale Gase - Abweichung von der thermischen Zustandsgleichung idealer Gase

Gase

34.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten