JoVE Logo

Anmelden

7.15 : Elektronenkonfiguration von Multielektronenatomen

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the lowest-energy subshell available, the 3s orbital, giving a 1s22s22p63s1 configuration. The electrons occupying the outermost shell orbital(s) (highest value of n) are called valence electrons, and those occupying the inner shell orbitals are called core electrons. Since the core electron shells correspond to noble gas electron configurations, we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along with the valence electrons in a condensed format. For sodium, the symbol [Ne] represents core electrons, (1s22s22p6), and the abbreviated or condensed configuration is [Ne]3s1.

Similarly, the abbreviated configuration of lithium can be represented as [He]2s1, where [He] represents the configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

Li: [He]2s1

Na: [Ne]3s1

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3s2 configuration, is analogous to its family member beryllium, [He]2s2. Both atoms have a filled s subshell outside of their filled inner shells. Aluminum (atomic number 13), with 13 electrons and the electron configuration [Ne]3s23p1, is analogous to its family member boron, [He]2s22p1.

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal quantum number of the outer shell of the heavier elements has increased by one to n = 3.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might expect that we would begin to add electrons to the 3d subshell. However, all available chemical and physical evidence indicates that potassium is like lithium and sodium, and that the next election is not added to the 3d level but is, instead, added to the 4s level. As discussed previously, the 3d orbital with no radial nodes is higher in energy because it is less penetrating and more shielded from the nucleus than the 4s, which has three radial nodes. Thus, potassium has an electron configuration of [Ar]4s1. Hence, potassium corresponds to Li and Na in its valence shell configuration. The next electron is added to complete the 4s subshell and calcium has an electron configuration of [Ar]4s2. This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

In the case of Cr and Cu, we find that half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. Experimentally, we observe that its ground-state electron configuration is actually [Kr]5s144. We can rationalize this observation by saying that the electron-electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals. There is no simple method to predict the exceptions for atoms where the magnitude of the repulsions between electrons is greater than the small differences in energy between subshells.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms.

Tags

JoVE CoreJoVE Core Chemistry Chapter 7JoVE Core Chemistry Lesson 987

Aus Kapitel 7:

article

Now Playing

7.15 : Elektronenkonfiguration von Multielektronenatomen

Elektronische Struktur von Atomen

37.9K Ansichten

article

7.1 : Das Licht als Welle

Elektronische Struktur von Atomen

48.1K Ansichten

article

7.2 : Das elektromagnetische Spektrum

Elektronische Struktur von Atomen

52.3K Ansichten

article

7.3 : Interferenz und Beugung

Elektronische Struktur von Atomen

30.6K Ansichten

article

7.4 : Photoelektrischer Effekt

Elektronische Struktur von Atomen

29.1K Ansichten

article

7.5 : Das Bohrsche Atommodell

Elektronische Struktur von Atomen

49.9K Ansichten

article

7.6 : Emissionsspektren

Elektronische Struktur von Atomen

49.5K Ansichten

article

7.7 : Die Materiewelle nach de Broglie

Elektronische Struktur von Atomen

25.2K Ansichten

article

7.8 : Das Heisenbergsche Unschärferelation

Elektronische Struktur von Atomen

22.9K Ansichten

article

7.9 : Das quantenmechanische Modell eines Atoms

Elektronische Struktur von Atomen

41.7K Ansichten

article

7.10 : Quantenzahlen

Elektronische Struktur von Atomen

34.1K Ansichten

article

7.11 : Atomorbitale

Elektronische Struktur von Atomen

32.9K Ansichten

article

7.12 : Das Paulische Ausschließungsprinzip

Elektronische Struktur von Atomen

33.9K Ansichten

article

7.13 : Die Energien von Atomorbitalen

Elektronische Struktur von Atomen

23.6K Ansichten

article

7.14 : Das Aufbauprinzip und die Hundschen Regeln

Elektronische Struktur von Atomen

43.9K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten