Some solids can transition directly into the gaseous state, bypassing the liquid state, via a process known as sublimation. At room temperature and standard pressure, a piece of dry ice (solid CO2) sublimes, appearing to gradually disappear without ever forming any liquid. Snow and ice sublimate at temperatures below the melting point of water, a slow process that may be accelerated by winds and the reduced atmospheric pressures at high altitudes. When solid iodine is warmed, the solid sublimes and a vivid purple vapor forms. The reverse of sublimation is called deposition, a process in which gaseous substances condense directly in the solid-state, bypassing the liquid state. The formation of frost is an example of deposition.
Like vaporization, the process of sublimation requires an input of energy to overcome intermolecular attractions. Sublimation is, therefore, an endothermic phase transition. The enthalpy of sublimation, ΔHsub, is the energy required to convert one mole of a substance from the solid to the gaseous state. For example, the sublimation of carbon dioxide is represented by:
Likewise, the enthalpy change for the reverse process of deposition is equal in magnitude but opposite in sign to that for sublimation. Because deposition involves the formation of intermolecular forces, it is an exothermic phase transition.
Consider the extent to which intermolecular attractions must be overcome to achieve a given phase transition. Converting a solid into a liquid requires that these attractions be only partially overcome; transition to the gaseous state requires that they be completely overcome. As a result, the enthalpy of fusion for a substance is less than its enthalpy of vaporization. This same logic can be used to derive an approximate relation between the enthalpies of all phase changes for a given substance. Though not an entirely accurate description, sublimation may be conveniently modeled as a sequential two-step process of melting followed by vaporization in order to apply Hess’s Law. Viewed in this manner, the enthalpy of sublimation for a substance may be estimated as the sum of its enthalpies of fusion and vaporization.
This text is adapted from Openstax, Chemistry 2e, Section 10.3: Phase Transitions.
Aus Kapitel 11:
Now Playing
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
16.4K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
39.6K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
83.4K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
54.7K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
43.2K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
27.0K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
18.3K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
16.7K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
33.6K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
54.4K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
12.1K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
21.7K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
37.9K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
13.3K Ansichten
Flüssigkeiten, Feststoffe und zwischenmolekulare Kräfte
16.2K Ansichten
See More
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten