Die DNA-Replikation besteht aus drei Hauptschritten: Initiation, Elongation und Terminierung. Die Replikation in Prokaryoten beginnt, wenn die Initiatorproteine den einzigen Replikationsursprung (ori) auf dem zirkulären Chromosom der Zelle binden. Die Replikation verläuft dann um den gesamten Kreis des Chromosoms in jeder Richtung von zwei Replikationsgabeln aus. Das resultiert in zwei DNA-Molekülen.
Die Replikation wird von einer Vielzahl spezialisierter Proteine koordiniert und durchgeführt. Die Topoisomerase öffnet eine Seite des doppelsträngigen DNA-Phosphat-Zucker-Rückgrats. Dadurch kann sich die DNA-Helix schneller entwickeln, während die Helikase die Bindungen zwischen den Basenpaaren an der Gabelung öffnet und die DNA in zwei Matrizenstränge trennt. Proteine, die an einzelsträngige DNA-Moleküle binden, stabilisieren die Stränge, während die Replikationsgabel entlang des Chromosoms wandert. DNA kann nur in Richtung des 5- und 3-Endes synthetisiert werden, so dass ein Strang der Matrize, der Leitstrang, kontinuierlich verlängert wird, während der andere Strang, der Folgestrang, in kürzeren Stücken von 1000-2000 Basenpaaren, die Okazaki-Fragmente genannt werden, synthetisiert wird.
Ein Großteil der Forschung der prokaryotischen DNA-Replikation wurde in dem Bakterium Escherichia coli, einem häufig verwendeten Modellorganismus, durchgeführt. E. coli hat 5 DNA-Polymerasen: Pol I, II, III, IV und V. Pol III ist für den Großteil der DNA-Replikation verantwortlich. Es kann etwa 1.000 Basenpaare pro Sekunde polymerisieren. Diese erstaunliche Geschwindigkeit ermöglicht es der an den beiden Replikationsgabeln vorhandenen Maschinerie, das E. coli Chromosom in etwa 40 Minuten zu duplizieren. Dabei müssen über 4,6 Millionen Basenpaare dupliziert werden. Die DNA-Polymerase I wird mittlerweile auch gut charakterisiert. Ihre Hauptaufgabe besteht darin, die RNA-Primer vom Anfang der Okazaki-Fragmente auf dem Folgestrang zu entfernen.
Unter günstigen Wachstumsbedingungen teilen sich E. coli alle 20 Minuten. Das ist etwa die Hälfte der Zeit, welche eine Zelle für die Replikation des Genoms benötigt. Wie ist das also möglich, wenn doch beide Tochterzellen ihre eigene DNA haben müssen? Die Wissenschaftler fanden heraus, dass das Bakterium einen weiteren Zyklus der DNA-Replikation vom Replikationsursprung aus beginnen kann, bevor der erste abgeschlossen ist. Das bedeutet, dass die Tochterzellen ein bereits kopiertes Chromosom erhalten und bereit sind, sich sehr schnell wieder zu teilen.
Aus Kapitel 6:
Now Playing
DNA Replication
85.3K Ansichten
DNA Replication
42.7K Ansichten
DNA Replication
26.7K Ansichten
DNA Replication
34.9K Ansichten
DNA Replication
13.4K Ansichten
DNA Replication
48.2K Ansichten
DNA Replication
20.6K Ansichten
DNA Replication
32.1K Ansichten
DNA Replication
9.1K Ansichten
DNA Replication
30.2K Ansichten
DNA Replication
22.5K Ansichten
DNA Replication
4.1K Ansichten
DNA Replication
7.3K Ansichten
DNA Replication
11.8K Ansichten
DNA Replication
3.6K Ansichten
See More
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten