Anmelden

Other than maintaining genome stability via DNA repair, homologous recombination plays an important role in diversifying the genome. In fact, the recombination of sequences forms the molecular basis of genomic evolution. Random and non-random permutations of genomic sequences create a library of new amalgamated sequences. These newly formed genomes can determine the fitness and survival of cells. In bacteria, homologous and non-homologous types of recombination lead to the evolution of new genomes that ultimately decide the adaptability of bacteria to varying environmental conditions.

During meiosis, when a single cell divides twice to produce four cells containing half the original number of chromosomes, HR leads to crossovers between genes. This means that two regions of the same chromosome with nearly identical sequences break and then reconnect but to a different end piece. The minor differences between the DNA sequences of the homologous chromosomes do not change the function of the gene but can change the allele or the phenotype of the gene. For example, if a gene codes for a trait such as hair color, its allele determines the specific phenotype, i.e. whether the hair would be black, blonde or red. Humans contain two alleles of the same gene, at each gene location, one from each parent. Recombination such as gene conversion changes this distribution, altering the gene’s form or manifestation in the offspring.

Tags
Gene ConversionMeiosisSpo11 EnzymeDouble strand BreaksPhosphodiester BackboneMRX Protein ComplexHeteroduplex DNADisplacement LoopDNA PolymeraseD loopHolliday JunctionsResolvasesNon crossover ProductCrossover Product

Aus Kapitel 7:

article

Now Playing

7.10 : Genkonvertierung

DNA-Reparatur und Rekombination

9.5K Ansichten

article

7.1 : Überblick über die DNA-Reparatur

DNA-Reparatur und Rekombination

26.9K Ansichten

article

7.2 : Basenexzisionsreparatur

DNA-Reparatur und Rekombination

21.3K Ansichten

article

7.3 : Long-patch Basen-Exzisionsreparatur

DNA-Reparatur und Rekombination

6.9K Ansichten

article

7.4 : Nukleotid-Exzisionsreparatur

DNA-Reparatur und Rekombination

11.0K Ansichten

article

7.5 : Transläsions-DNA-Polymerasen

DNA-Reparatur und Rekombination

9.6K Ansichten

article

7.6 : Reparatur von Doppelstrangbrüchen

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.7 : DNA-Schäden können den Zellzyklus zum Stillstand bringen

DNA-Reparatur und Rekombination

8.9K Ansichten

article

7.8 : Homologe Rekombination

DNA-Reparatur und Rekombination

49.5K Ansichten

article

7.9 : Reaktivierung blockierter Replikationsgabeln

DNA-Reparatur und Rekombination

5.7K Ansichten

article

7.11 : Überblick über Transposition und Rekombination

DNA-Reparatur und Rekombination

14.8K Ansichten

article

7.12 : DNA-only Transposons

DNA-Reparatur und Rekombination

14.1K Ansichten

article

7.13 : Retroviren

DNA-Reparatur und Rekombination

11.7K Ansichten

article

7.14 : LTR-Retrotransposons

DNA-Reparatur und Rekombination

17.1K Ansichten

article

7.15 : Nicht-LTR-Retrotransposons

DNA-Reparatur und Rekombination

11.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten