Anmelden

Here, in contrast to the E2 reaction mechanism, we delve into the aspects of the E1 reaction mechanism, which has two steps: rate-limiting loss of the leaving group and abstraction of the beta hydrogen by a weak base. Typically, the experimental proof for the E1 mechanism is via kinetic studies or isotope studies. While the former demonstrates the first-order kinetics—the dependence of the reaction solely on substrate concentration—the latter proves the abstraction of hydrogen only in the second step.

Factors influencing E1 Reaction:

The three key factors that influence E1 elimination reactions are (a) the stability of the carbocation, (b) the nature of the leaving group, and (c) the solvent type. In this context, the mechanism of hyperconjugation that leads to the stabilization of carbocations is demonstrated. This is key to the rate-limiting step where the carbocation is formed, influencing the speed of the reaction of substituted alkyl halides. An interesting corollary is a 1,2-hydride shift in a primary carbocation to form a secondary carbocation or a 1,2-alkyl shift to give a more stable tertiary carbocation. Subsequently, as the carbon–halogen bond breaking is the rate-limiting step, E1 reactions are influenced mainly by the nature of the leaving halide groups as weak conjugate bases. Lastly, the polarity of protic solvents is elucidated, as they play a crucial role in stabilizing the intermediate carbocations/halides in the rate-limiting step.

Tertiary Halides: SN1 versus E1

At this stage, it is essential to compare SN1 versus E1 reactions, for both these reactions proceed via the formation of a common intermediate and, as a result, respond similarly to factors affecting reactivity. Typically, it is difficult to influence whether the formation of products proceeds via the SN1 or E1 route, for, in either case, the free energy of activation proceeding from the carbocation is very small. SN1 is often favorable as compared to E1 for unimolecular reactions when the temperatures are lower. However, in general, synthetic routes do not prefer substitution reactions for tertiary halides, as they undergo elimination very quickly. An increase in the temperature of the reaction condition shifts the mechanism to favor E1 instead. As an unwritten rule, when an elimination product is desired from such tertiary substrates, a strong base is used to promote the E2 mechanism against the competing E1 versus SN1 mechanisms.

Tags
E1 ReactionKineticsMechanismLeaving GroupBeta HydrogenWeak BaseKinetic StudiesIsotope StudiesCarbocation StabilityLeaving Group NatureSolvent TypeHyperconjugationRate limiting StepSubstituted Alkyl Halides12 hydride ShiftPrimary CarbocationSecondary Carbocation12 alkyl ShiftTertiary CarbocationCarbon halogen Bond BreakingProtic Solvents

Aus Kapitel 6:

article

Now Playing

6.18 : E1 Reaction: Kinetics and Mechanism

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

14.8K Ansichten

article

6.1 : Alkylhalogenide

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

15.0K Ansichten

article

6.2 : Nukleophile Substitutionsreaktionen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

15.1K Ansichten

article

6.3 : Nukleophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

12.5K Ansichten

article

6.4 : Elektrophile

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.8K Ansichten

article

6.5 : Verlassen von Gruppen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.1K Ansichten

article

6.6 : Karbationen

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

10.6K Ansichten

article

6.7 : SN2 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.8K Ansichten

article

6.8 : SN2 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.3K Ansichten

article

6.9 : SN2 Reaktion: Übergangszustand

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

9.1K Ansichten

article

6.10 : SN2 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.9K Ansichten

article

6.11 : SN1 Reaktion: Kinetik

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

7.4K Ansichten

article

6.12 : SN1 Reaktion: Mechanismus

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

11.1K Ansichten

article

6.13 : SN1 Reaktion: Stereochemie

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

8.0K Ansichten

article

6.14 : Vorhersage von Produkten: SN1 vs. SN2

Nukleophile Substitutions- und Eliminierungsreaktionen von Alkylhalogeniden

13.0K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten