JoVE Logo

Anmelden

29.4 : Magnetic Field Due To A Thin Straight Wire

Consider an infinitely long straight wire carrying a current I. The magnetic field at point P at a distance a from the origin can be calculated using the Biot-Savart law.

Magnetic field around a current-carrying wire diagram; illustrates electromagnetic induction.

Consider a current element dx at a distance x from the origin. The current element makes an angle θ with the line joining dx and P. Using the Pythagorus theorum to express the distance between the current element and the point, the magnetic field due to the current element at point P can be estimated using Equation 1.

Magnetic field equation \(dB=\frac{\mu_0}{4\pi}\frac{Iadx}{(x^2+a^2)^{3/2}}\); physics formula.

The wire is symmetrical about the origin. Hence, integrating Equation 1 within the limits of zero to infinity gives the equation for the magnetic field in terms of the current and the distance of point P from the wire.

Magnetic field equation B=μ₀I/2πa, formula diagram, illustrating physics and electromagnetism concepts.

The magnetic field lines of the infinite wire are circular and centered at the wire, and they are identical at every plane perpendicular to the wire. Since the intensity of the field decreases with the distance from the wire, the spacing of the field lines also increases correspondingly with distance.

The right-hand rule gives the direction of magnetic field lines. If the thumb points along the current, the fingers wrap around the wire in the same way as the magnetic field. Therefore, the field points into the page at point P. The magnetic fields due to all the current elements have the same direction.

Tags

Magnetic FieldStraight WireCurrent IBiot Savart LawCurrent ElementDistance AEquation 1Circular Field LinesIntensity DecreaseRight hand RuleMagnetic Field DirectionIntegration LimitsSymmetrical Wire

Aus Kapitel 29:

article

Now Playing

29.4 : Magnetic Field Due To A Thin Straight Wire

Sources of Magnetic Fields

4.7K Ansichten

article

29.1 : Magnetfeld durch bewegte Ladungen

Sources of Magnetic Fields

8.3K Ansichten

article

29.2 : Biot-Savart-Gesetz

Sources of Magnetic Fields

5.8K Ansichten

article

29.3 : Biot-Savart-Gesetz: Problemlösung

Sources of Magnetic Fields

2.4K Ansichten

article

29.5 : Magnetfeld durch zwei gerade Drähte

Sources of Magnetic Fields

2.3K Ansichten

article

29.6 : Magnetische Kraft zwischen zwei parallelen Strömen

Sources of Magnetic Fields

3.4K Ansichten

article

29.7 : Magnetfeld einer Stromschleife

Sources of Magnetic Fields

4.3K Ansichten

article

29.8 : Divergenz und Krümmung des Magnetfeldes

Sources of Magnetic Fields

2.7K Ansichten

article

29.9 : Das Amperesche Gesetz

Sources of Magnetic Fields

3.6K Ansichten

article

29.10 : Amperes Gesetz: Problemlösung

Sources of Magnetic Fields

3.5K Ansichten

article

29.11 : Magnetspulen

Sources of Magnetic Fields

2.4K Ansichten

article

29.12 : Magnetfeld eines Magneten

Sources of Magnetic Fields

3.7K Ansichten

article

29.13 : Ringkerne

Sources of Magnetic Fields

2.8K Ansichten

article

29.14 : Magnetisches Vektorpotential

Sources of Magnetic Fields

522 Ansichten

article

29.15 : Potential durch ein magnetisiertes Objekt

Sources of Magnetic Fields

252 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten