Anmelden

The total current density in magnetized material is the sum of the free and bound current densities. The free current arises due to the motion of free electrons within the material, while the bound current arises due to the alignment of magnetic dipole moments.

The differential form of Ampere's law in vacuum states that the curl of the magnetic field equals the permeability times the current density. In a magnetized material, the law is modified to incorporate the free and bound current densities.

Equation1

The equation is modified when the bound current density is expressed as the curl of the magnetization vector. The terms involving the curl of the parameters are rearranged as

Equation2

The terms in the bracket can be expressed as magnetic field intensity, Equation 6. It is the magnetic field vector upon permeability minus the magnetization vector.

Equation3

Thus, Ampere's law in matter states that the curl of the Equation 6equals the free current density.

Equation4

The equation can be written in integral form as

Equation5

The line integral of Equation 6along a closed Amperian loop equals the net free current passing through the loop.

The magnetic field intensity helps express Ampere's law in matter in terms of the free current. Similarly, the electric displacement vector helps in representing Gauss's law in matter in terms of the free charge. Thus, the magnetic field intensity vector in magnetostatics is analogous to the electric displacement vector in electrostatics.

Since an electromagnet is formed when current is passed through a coil, the free current is the known parameter. On the other hand, the B field is a material characteristic. Hence, the H field is often used in experiments rather than the B field.

Tags

Ampere s LawCurrent DensityMagnetized MaterialFree CurrentBound CurrentMagnetic Dipole MomentsMagnetization VectorMagnetic Field IntensityAmperian LoopElectromagnetMagnetic Field VectorPermeabilityElectric Displacement VectorMagnetostatics

Aus Kapitel 29:

article

Now Playing

29.17 : Ampere's Law in Matter

Sources of Magnetic Fields

630 Ansichten

article

29.1 : Magnetfeld durch bewegte Ladungen

Sources of Magnetic Fields

8.1K Ansichten

article

29.2 : Biot-Savart-Gesetz

Sources of Magnetic Fields

5.5K Ansichten

article

29.3 : Biot-Savart-Gesetz: Problemlösung

Sources of Magnetic Fields

2.3K Ansichten

article

29.4 : Magnetfeld aufgrund eines dünnen geraden Drahtes

Sources of Magnetic Fields

4.6K Ansichten

article

29.5 : Magnetfeld durch zwei gerade Drähte

Sources of Magnetic Fields

2.2K Ansichten

article

29.6 : Magnetische Kraft zwischen zwei parallelen Strömen

Sources of Magnetic Fields

3.3K Ansichten

article

29.7 : Magnetfeld einer Stromschleife

Sources of Magnetic Fields

4.2K Ansichten

article

29.8 : Divergenz und Krümmung des Magnetfeldes

Sources of Magnetic Fields

2.6K Ansichten

article

29.9 : Das Amperesche Gesetz

Sources of Magnetic Fields

3.5K Ansichten

article

29.10 : Amperes Gesetz: Problemlösung

Sources of Magnetic Fields

3.4K Ansichten

article

29.11 : Magnetspulen

Sources of Magnetic Fields

2.4K Ansichten

article

29.12 : Magnetfeld eines Magneten

Sources of Magnetic Fields

3.5K Ansichten

article

29.13 : Ringkerne

Sources of Magnetic Fields

2.8K Ansichten

article

29.14 : Magnetisches Vektorpotential

Sources of Magnetic Fields

467 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten