JoVE Logo

Anmelden

13.12 : Surface Tension and Surface Energy

When a paint brush is immersed in water, the bristles wave freely inside the water. When it is taken out, the bristles stick together. The reason behind this effect is surface tension.

Consider a beaker filled with liquid. The bulk molecules in the liquid experience equal attractive forces on all sides with the surrounding molecules. However, the surface molecules experience a net attractive force downward due to the bulk molecules. The surface of the liquid behaves like a stretched membrane, and it tends to minimize the surface area. This property of liquids is called surface tension. This is why liquid drops take a spherical shape, as a sphere has the minimum surface area for a given volume.

Like a needle, certain objects denser than water can float on water due to surface tension.

Consider a frame with a sliding arm dipped in soap solution. The soap bubble pulls the sliding arm inward due to surface tension. If the frame is kept in a vertical position, so that the sliding arm can move up and down, then a small weight can be hung on the sliding arm to keep the frame in equilibrium. This weight is equal to the force required to pull the arm back outward. Surface tension is expressed as force per unit length. Its unit is N/m or J/m2.

Surface molecules have higher potential energy than molecules inside the bulk of a liquid. This energy is called surface energy, which is the product of force and displacement.

Tags

Surface TensionSurface EnergyLiquid BehaviorAttractive ForcesSurface MoleculesMinimum Surface AreaSpherical ShapeFloating ObjectsEquilibriumForce Per Unit LengthPotential EnergySoap BubbleLiquid Drops

Aus Kapitel 13:

article

Now Playing

13.12 : Surface Tension and Surface Energy

Fluid Mechanics

1.3K Ansichten

article

13.1 : Eigenschaften von Flüssigkeiten

Fluid Mechanics

3.7K Ansichten

article

13.2 : Dichte

Fluid Mechanics

14.5K Ansichten

article

13.3 : Druck von Flüssigkeiten

Fluid Mechanics

15.3K Ansichten

article

13.4 : Variation des atmosphärischen Drucks

Fluid Mechanics

2.0K Ansichten

article

13.5 : Pascalsches Gesetz

Fluid Mechanics

8.0K Ansichten

article

13.6 : Anwendung des Pascalschen Gesetzes

Fluid Mechanics

8.0K Ansichten

article

13.7 : Manometer

Fluid Mechanics

3.0K Ansichten

article

13.8 : Auftrieb

Fluid Mechanics

9.1K Ansichten

article

13.9 : Das Archimedische Prinzip

Fluid Mechanics

7.7K Ansichten

article

13.10 : Dichte und Archimedisches Prinzip

Fluid Mechanics

6.5K Ansichten

article

13.11 : Beschleunigen von Flüssigkeiten

Fluid Mechanics

992 Ansichten

article

13.13 : Überdruck in einem Tropfen und einer Blase

Fluid Mechanics

1.6K Ansichten

article

13.14 : Kontaktwinkel

Fluid Mechanics

11.6K Ansichten

article

13.15 : Aufsteigen von Flüssigkeit in einem Kapillarrohr

Fluid Mechanics

1.3K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten