Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Mitochondriale Kontaktstellen sind Proteinkomplexe, die mit mitochondrialen inneren und äußeren Membranproteinen interagieren. Diese Stellen sind essentiell für die Kommunikation zwischen den mitochondrialen Membranen und damit zwischen dem Zytosol und der mitochondrialen Matrix. Hier beschreiben wir eine Methode zur Identifizierung von Kandidaten, die sich für diese spezifische Klasse von Proteinen qualifizieren.
Mitochondrien sind in praktisch allen eukaryotischen Zellen vorhanden und erfüllen essentielle Funktionen, die weit über die Energiegewinnung hinausgehen, z. B. die Synthese von Eisen-Schwefel-Clustern, Lipiden oder Proteinen, die Ca2+ -Pufferung und die Induktion von Apoptose. Ebenso führt eine mitochondriale Dysfunktion zu schweren menschlichen Krankheiten wie Krebs, Diabetes und Neurodegeneration. Um diese Funktionen erfüllen zu können, müssen die Mitochondrien über ihre Hülle, die aus zwei Membranen besteht, mit dem Rest der Zelle kommunizieren. Daher müssen diese beiden Membranen ständig miteinander interagieren. Proteinhaltige Kontaktstellen zwischen der inneren und äußeren Membran der Mitochondrien sind dabei essentiell. Bisher wurden mehrere Kontaktstellen identifiziert. Bei der hier beschriebenen Methode werden die Mitochondrien von Saccharomyces cerevisiae verwendet, um Kontaktstellen zu isolieren und so Kandidaten zu identifizieren, die für Kontaktstellenproteine in Frage kommen. Wir haben diese Methode verwendet, um den mitochondrialen Kontaktstellen- und Cristae-Organisierungssystem-Komplex (MICOS) zu identifizieren, einen der wichtigsten kontaktstellenbildenden Komplexe in der mitochondrialen Innenmembran, der von der Hefe bis zum Menschen konserviert ist. Kürzlich haben wir diese Methode weiter verbessert, um eine neue Kontaktstelle zu identifizieren, die aus Cqd1 und dem Por1-Om14-Komplex besteht.
Mitochondrien erfüllen in Eukaryoten eine Vielzahl unterschiedlicher Funktionen, wobei die bekannteste die Produktion von ATP durch oxidative Phosphorylierung ist. Weitere Funktionen sind die Produktion von Eisen-Schwefel-Clustern, die Lipidsynthese und in höheren Eukaryoten die Ca2+-Signalgebung und die Induktion der Apoptose 1,2,3,4. Diese Funktionen sind untrennbar mit ihrer komplexen Ultrastruktur verbunden.
Die mitochondriale Ultrastruktur wurde erstmals mittels Elektronenmikroskopie
1. Puffer und Vorratslösungen
Es ist relativ einfach, die innere und äußere Membran der Mitochondrien zu trennen. Die Erzeugung und Trennung von Vesikeln, die Kontaktstellen enthalten, ist jedoch wesentlich schwieriger. Unserer Meinung nach sind zwei Schritte entscheidend und wesentlich: die Beschallungsbedingungen und der verwendete Gradient.
In der Regel wird angenommen, dass lineare Farbverläufe im Vergleich zu Stufengradienten eine bessere Auflösung haben. Ihre reproduzierbare Herstellung ist jedoch langwierig und .......
Die mitochondriale Subfraktionierung ist ein kompliziertes Experiment mit mehreren hochkomplexen Schritten. Daher haben wir uns zum Ziel gesetzt, unsere etablierte Methode32 weiter zu verbessern und bis zu einem gewissen Grad zu vereinfachen. Die Herausforderungen lagen hier in der Anforderung an komplizierten und hochspezialisierten Geräten, bei denen es sich oft um Einzelkonstruktionen handelt, sowie dem enormen Zeit- und Energieverbrauch. Zu diesem Zweck haben wir versucht, die Pumpen und Einz.......
Die Autoren erklären, dass keine Interessenkonflikte bestehen.
Das M.E.H. bedankt sich bei der Deutschen Forschungsgemeinschaft (DFG), Projektnummer 413985647, für die finanzielle Unterstützung. Die Autoren danken Dr. Michael Kiebler, Ludwig-Maximilians-Universität München, für seine großzügige und umfangreiche Unterstützung. Wir danken Walter Neupert für seinen wissenschaftlichen Input, seine hilfreichen Diskussionen und seine kontinuierliche Inspiration. J.F. bedankt sich bei der Graduate School Life Science Munich (LSM) für die Unterstützung.
....Name | Company | Catalog Number | Comments |
13.2 mL, Open-Top Thinwall Ultra-Clear Tube, 14 x 89mm | Beckman Instruments, Germany | 344059 | |
50 mL, Open-Top Thickwall Polycarbonate Open-Top Tube, 29 x 104mm | Beckman Instruments, Germany | 363647 | |
A-25.50 Fixed-Angle Rotor- Aluminum, 8 x 50 mL, 25,000 rpm, 75,600 x g | Beckman Instruments, Germany | 363055 | |
Abbe refractometer | Zeiss, Germany | discontinued, any pipet controller will suffice | |
accu-jet pro Pipet Controller | Brandtech, USA | BR26320 | discontinued, any pipet controller will suffice |
Beaker 1000 mL | DWK Life Science, Germany | C118.1 | |
Branson Digital Sonifier W-250 D | Branson Ultrasonics, USA | FIS15-338-125 | |
Branson Ultrasonic 3mm TAPERED MICROTIP | Branson Ultrasonics, USA | 101-148-062 | |
Branson Ultrasonics 200- and 400-Watt Sonifiers: Rosette Cooling Cell | Branson Ultrasonics, USA | 15-338-70 | |
Centrifuge Avanti JXN-26 | Beckman Instruments, Germany | B37912 | |
Centrifuge Optima XPN-100 ultra | Beckman Instruments, Germany | 8043-30-0031 | |
cOmplete Proteaseinhibtor-Cocktail | Roche, Switzerland | 11697498001 | |
D-Sorbit | Roth, Germany | 6213 | |
EDTA (Ethylendiamin-tetraacetic acid disodium salt dihydrate) | Roth, Germany | 8043 | |
Erlenmeyer flask, 100 mL | Roth, Germany | X747.1 | |
graduated pipette, Kl. B, 25:0, 0.1 | Hirschmann, Germany | 1180170 | |
graduated pipette, Kl. B, 5:0, 0.05 | Hirschmann, Germany | 1180153 | |
ice bath | neoLab, Germany | S12651 | |
Magnetic stirrer RCT basic | IKA-Werke GmbH, Germany | Z645060GB-1EA | |
MOPS (3-(N-Morpholino)propanesulphonic acid) | Gerbu, Germany | 1081 | |
MyPipetman Select P1000 | Gilson, USA | FP10006S | |
MyPipetman Select P20 | Gilson, USA | FP10003S | |
MyPipetman Select P200 | Gilson, USA | FP10005S | |
Omnifix 1 mL | Braun, Germany | 4022495251879 | |
Phenylmethylsulfonyl fluoride (PMSF) | Serva, Germany | 32395.03 | |
STERICAN cannula 21 Gx4 4/5 0.8x120 mm | Braun, Germany | 4022495052414 | |
stirring bar, 15 mm | VWR, USA | 442-0366 | |
Sucrose | Merck, Germany | S8501 | |
SW 41 Ti Swinging-Bucket Rotor | Beckman Instruments, Germany | 331362 | |
Test tubes | Eppendorf, Germany | 3810X | |
Tissue grinders, Potter-Elvehjem type, 2 mL glass vessel | VWR, USA | 432-0200 | |
Tissue grinders, Potter-Elvehjem type, 2 mL plunger with serrated tip | VWR, USA | 432-0212 | |
Trichloroacetic acid (TCA) | Sigma Aldrich, Germany | 33731 | discontinued, any TCA will suffice (CAS: 73-03-9) |
TRIS | Roth, Germany | 4855 |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenWeitere Artikel entdecken
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten