Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Dieses Protokoll beschreibt ein Herstellungsverfahren für ein flexibles Substrat für die oberflächenverstärkte Raman-Streuung. Diese Methode wurde beim erfolgreichen Nachweis niedriger Konzentrationen von R6G und Thiram eingesetzt.

Zusammenfassung

In diesem Artikel wird eine Herstellungsmethode für ein flexibles Substrat vorgestellt, das für die oberflächenverstärkte Raman-Streuung (SERS) entwickelt wurde. Silbernanopartikel (AgNPs) wurden durch eine Komplexierungsreaktion mit Silbernitrat (AgNO3) und Ammoniak synthetisiert, gefolgt von einer Reduktion mit Glukose. Die resultierenden AgNPs wiesen eine gleichmäßige Größenverteilung von 20 nm bis 50 nm auf. Anschließend wurde 3-Aminopropyltriethoxysilan (APTES) verwendet, um ein PDMS-Substrat zu modifizieren, das mit Sauerstoffplasma oberflächenbehandelt worden war. Dieser Prozess erleichterte die Selbstorganisation von AgNPs auf dem Substrat. Eine systematische Evaluierung des Einflusses verschiedener experimenteller Bedingungen auf die Substratleistung führte zur Entwicklung eines SERS-Substrats mit exzellenter Leistung und einem Enhanced Factor (EF). Mit diesem Substrat wurden beeindruckende Nachweisgrenzen von 10-10 M für R6G (Rhodamin 6G) und 10-8 M für Thiram erreicht. Das Substrat wurde erfolgreich zum Nachweis von Pflanzenschutzmittelrückständen auf Äpfeln eingesetzt und lieferte sehr zufriedenstellende Ergebnisse. Das flexible SERS-Substrat weist ein großes Potenzial für reale Anwendungen auf, einschließlich der Detektion in komplexen Szenarien.

Einleitung

Die oberflächenverstärkte Raman-Streuung (SERS) als eine Art der Raman-Streuung bietet die Vorteile einer hohen Empfindlichkeit und schonender Detektionsbedingungen und kann sogar die Detektion einzelner Moleküle erreichen 1,2,3,4. Metallnanostrukturen, wie Gold und Silber, werden typischerweise als SERS-Substrate verwendet, um die Detektion von Substanzen zu ermöglichen 5,6. Die Verbesserung der elektromagnetischen Kopplung auf nanostrukturierten Oberflächen spielt eine wichtige Rol....

Protokoll

1. Synthese von Nanopartikeln

  1. Herstellung von Silbernitratlösung
    1. Mit einer Präzisionswaage werden 0,0017 g Silbernitrat in AR-Qualität (AgNO3, siehe Materialtabelle) abgemessen und zu 10 ml deionisiertem Wasser (DI) gegeben. Rühren Sie die Mischung um, um eine 10-3 mol/LAgNO3-Lösung zu erhalten.
  2. Herstellung des Silber-Ammoniak-Komplexes
    1. Nehmen Sie 1 ml Ammoniakwasser in AR-Qualität (NH3. H2O, siehe Werkstofftabelle) mit einer Spritze aufrufen und unter Rühren tropfenweise in die Silbernitratlösung geben. Stoppen Sie di....

Repräsentative Ergebnisse

In dieser Studie wurde ein flexibles SERS-Substrat entwickelt, das aus synthetischen AgNPs besteht, die in Glukose eingewickelt und unter Verwendung von APTES auf PDMS selbstorganisiert sind, um eine hervorragende Detektionsleistung für praktische Pestizidnachweisanwendungen zu erzielen. Die Nachweisgrenzen für R6G und Thiram wurden beide bei 10-10 M bzw. 10-8 M erreicht, mit einem Verstärkungsfaktor (EF) von 1 x 10 5. Darüber hinaus zeigte das Substrat eine Gleichmäßigkeit.

Diskussion

In dieser Studie wurde ein flexibles SERS-Substrat eingeführt, das AgNPs durch chemische Modifikation an PDMS bindet und eine hervorragende Leistung erzielt. Bei der Partikelsynthese, insbesondere bei der Silber-Ammoniak-Komplexsynthese (Schritt 1.2), spielt die Farbe der Lösung eine entscheidende Rolle. Die Zugabe von zu viel Ammoniakwasser kann die Qualität der AgNP-Synthese beeinträchtigen und möglicherweise zu erfolglosen Nachweisergebnissen führen. Während des Syntheseprozesses sollte auf die Substratmodifika.......

Offenlegungen

Die Autoren erklären, dass keine Interessenkonflikte bestehen.

Danksagungen

Die Forschung wird von der National Natural Science Foundation of China (Grant No. 61974004 und 61931018) sowie dem National Key R&D Program of China (Grant No. 2021YFB3200100) unterstützt. Die Studie würdigt das Elektronenmikroskopie-Labor der Universität Peking für den Zugang zu Elektronenmikroskopen. Darüber hinaus bedankt sich die Forschung bei Ying Cui und der School of Earth and Space Science der Peking University für ihre Unterstützung bei Raman-Messungen.

....

Materialien

NameCompanyCatalog NumberComments
Ammonia (NH3.H2O, 25%)Beijing Chemical Works
APTES (98%)BeyotimeST1087
BD-20AC Laboratory Chrona TreaterElectro-Technic Products Inc.12051A
D-glucoseBeijing Chemical Works
Environmental Scanning electron microscope (ESEM)FEIQUANTA 250
Raman microscopeHoriba JYLabRAM HR Evolution
Rhodamine 6GBeijing Chemical Works
Silicone Elastomer Base and Silicone Elastomer Curing AgentDow Corning CorporationSYLGARD 184
Silver nitrateBeijing Chemical Works
Thiram (C6H12N2S2, 99.9%)Beijing Chemical Works

Referenzen

  1. Zheng, F., Ke, W., Shi, L., Liu, H., Zhao, Y. Plasmonic Au-Ag janus nanoparticle engineered ratiometric surface-enhanced Raman scattering aptasensor for ochratoxin A detection. Analytical Chemistry. 91 (18), 11812-11820 (2019).
  2. Zhou, L., et al.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Diesen Monat in JoVEAusgabe 201Oberfl chenverst rkte Raman Streuung SERSflexibles SubstratAgNPsbiochemische Detektion

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten