Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we outline the procedure for analyzing replication progression through pathogenic, structure-prone repeats using 2-dimensional gel electrophoresis.

Abstract

Two-dimensional neutral/neutral gel-electrophoresis (2DGE) emerged as a benchmark technique to analyze DNA replication through natural impediments. This protocol describes how to analyze replication fork progression through structure-prone, expandable DNA repeats within the simian virus 40 (SV40)-based episome in human cells. In brief, upon plasmid transfection into human cells, replication intermediates are isolated by the modified Hirt protocol and treated with the DpnI restriction enzyme to remove non-replicated DNA. Intermediates are then digested by appropriate restriction enzymes to place the repeat of interest within the origin-distal half of a 3-5 kb-long DNA fragment. The replication intermediates are separated into two perpendicular dimensions, first by size and then by shape. Following Southern blot hybridization, this approach allows researchers to observe fork stalling at various structure-forming repeats on the descending half of the replication Y-arc. Furthermore, this positioning of the stall site allows the visualization of various outcomes of repeat-mediated fork stalling, such as fork reversal, the advent of a converging fork, and recombinational fork restart.

Introduction

Short tandem repeats (STR) are small, typically 2-9 base pairs (bp), repetitive sequences of DNA that constitute around 3% of the human genome1. STR play an important role in gene regulation2; however, their repetitive composition leaves them prone to non-canonical DNA secondary structure formation and subsequent genetic instability3,4. From left-handed helices to hairpins/cruciforms, to three and four-stranded helices, these alternative DNA structures cause intrinsic challenges for the replisome. A natural prerequisite for secondary structure formation is DNA un....

Protocol

NOTE: The plasmid designed for our outlined 2DGE analysis in mammalian cells should contain an SV40 origin of replication several kb upstream of structure-prone repeats (Figure 2). Leading and lagging synthesis should be kept in mind when choosing what orientation relative to the origin the repeats should be cloned into the plasmid.

figure-protocol-461
.......

Representative Results

If successful, upon visualization, a sharp arc of replication forks can be observed extending up and out from the massive 1n spot (Figure 5A). The size of a fragment, or percentage that is replicated, determines the fragment's mobility in the first dimension. As the intermediates develop a more jointed structure, they will begin to travel more slowly in the second dimension. Therefore, if an intermediate has traveled slowly in both dimensions, it can be asserted that it is a highly repli.......

Discussion

2DGE provides a semi-quantitative and comprehensive image of the relative populations of intermediates that arise during the replication of a particular sequence. Given that the fragile molecular structures of replication forks must be maintained throughout this procedure, great care should be implemented to prevent physical shearing and chemical denaturation. Therefore, it is highly recommended that any alkaline treatment be avoided during plasmid isolation. To avoid this, we and others have implemented a modified form .......

Acknowledgements

We thank Jorge Cebrian and Anastasia Rastokina who started developing this approach in our lab, Massimo Lopes for providing us with pML113 plasmid and invaluable advice, Ylli Doksani for insightful discussions, and members of the Mirkin lab for their support. The work in the Mirkin lab is supported by the National Institute of General Medical Sciences [R35GM130322] and NSF-BSF [2153071].

....

Materials

NameCompanyCatalog NumberComments
10x TBE BufferBio Rad1610733
20x SSC BufferFisher ScientificBP1325-1
293T cellsATCCCRL-3216
a-32P dATP, 3000 Ci/mmol RevvityBLU512H250UC
AgaroseFisher ScientificBP160-500
Amersham Hybond-N+Fisher ScientificRPN303B
BAS Storage Phosphor ScreensFisher Scientific28956482
Church and Gibert's hybriddization bufferFisher Scientific50-103-5408
DecaLabel DNA labeling kitThermoFisher ScientificK0622
DMEM, high gluctose, GltaMAX Supplement, pyruvateThermoFisher Scientific10569010
DpnINew England BiolabsR0176SAdditional restriction enzymes will need to be purchased as well
EDTA 0.5 M, pH 8Fisher ScientificBP2482500
Ethanol, 70%Fisher ScientificBP82031GAL
Fetal Bovine Serum VWR97068-085
Hydrochloric acid solution, 12 MMillipore Sigma13-1683
IsopropanolFisher ScientificBP26184
jetPRIME DNA and siRNA Transfection Reagent with BufferVWR101000027
MycoZap Plus-CLVWR75870-448
NaClMillipore Sigma746398-500G
Nalgene Oak Ridge High-Speed Centrifuge TubesThermoFisher Scientific3139-0050
Phosphate Buffer Saline, pH 7.4ThermoFisher Scientific10010023
Phosphate Buffer Saline, pH 7.5ThermoFisher Scientific10010024
Proteinase KThermoFisher ScientificEO0491
Proteinase KThermoFisher ScientificEO0492
Pure Cellulose Chromatography PaperFisher Scientific05-714-4
Pure Cellulose Chromatography PaperFisher Scientific05-714-5
RulerFisher Scientific09-016
ScalpelFisher Scientific12-460-451
Sodium dodecyl sulfateMillipore Sigma436143-25G
Sodium hydroxideFisher ScientificS25548
Sorval LYNX 4000 Superspeed CentrifugeThermoFisher Scientific75006580
Sub-cell Horizontal Electrophoresis SystemBio Rad1704401
TH13-6 x 50 Swinging Bucket RotorThermoFisher Scientific75003010
Tris-HCl 1 M, pH 7.5Fisher ScientificBP1757-500
Trypsin-EDTA (0.25%), phenol redThermoFisher Scientific25200056

References

Explore More Articles

Genetics

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved