Light-sheet Fluorescence Microscopy to Capture 4-Dimensional Images of the Effects of Modulating Shear Stress on the Developing Zebrafish HeartVictoria Messerschmidt *1, Zachary Bailey *1, Kyung In Baek 2, Yichen Ding 2, Jeffrey J. Hsu 2, Richard Bryant 1, Rongsong Li 3, Tzung K. Hsiai 2, Juhyun Lee 1
1Department of Bioengineering, The University of Texas at Arlington, 2Department of Medicine (Cardiology) and Bioengineering, UCLA, 3College of Health Science and Environmental Engineering, Shenzhen Technology University
Here, we present a protocol to visualize developing hearts in zebrafish in 4-Dimensions (4-D). 4-D imaging, via light-sheet fluorescence microscopy (LSFM), takes 3-Dimensional (3-D) images over time, to reconstruct developing hearts. We show qualitatively and quantitatively that shear stress activates endocardial Notch signaling during chamber development, which promotes cardiac trabeculation.