In this video we demonstrate how our lab routinely passages HuES human embryonic stem cell lines with trypsin. Brought to you by JoVE.
Here we demonstrate how our lab freezes HuES human embryonic stem cell lines.
Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock.
This movie and the protocol are intended to help learning nuclear transfer.
The ability to measure the kinetics of vesicle release can help provide insight into some of the basics of neurotransmission. Here we used real-time imaging of vesicles labeled with the red fluorescent dye FM 4-64 to measure the rate of presynaptic vesicle release in hippocampal neuronal cultures.
The ability of human embryonic stem cells to self-renew and differentiate into all cell types of the body suggests that they hold great promise for both medical applications and as a research tool for addressing fundamental questions in development and disease. Here, we provide a concise, step-by-step protocol for the derivation of human embryonic stem cells from embryos by immunosurgical isolation of the inner cell mass.
Here, we describe procedures for studying changes in phagocytosis-induced gene expression with a luciferase-based reporter gene approach using the Dual-GloTM Luciferase Assay System from Promega.
We developed the Visual-Motor Response to quantitate the motor output of larval zebrafish in response to light increments and decrements. We also examined zebrafish vision mutants, including the no optokinetic response (nrc) mutants, which were thought to be completely blind when tested by another vision assay, the optokinetic reflex.
Despite an increase in the use of structural and functional magnetic resonance imaging (fMRI) in humans, the study of young pediatric populations remains a challenge. We present a hands-on, step-by-step video protocol including guidelines for clinicians and researchers intending to perform (f)MRI in young children.
This procedure describes a method for the isolation and culture of the murine organ of Corti with or without the spiral limbus and spiral ganglion neurons. We also demonstrate a method for the expression of an exogenous reporter gene in the organ of Corti explant by electroporation.
This protocol describes a technique used to model Zika virus infection of the developing human brain. Using wildtype or engineered stem cell lines, researchers may use this technique to uncover the various mechanisms or treatments that may affect early brain infection and resulting microcephaly in Zika virus-infected embryos.
ACERCA DE JoVE
Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados