Iniciar sesión

Ohio State University College of Medicine

9 ARTICLES PUBLISHED IN JoVE

image

Biology

Visualization of MG53-mediated Cell Membrane Repair Using in vivo and in vitro Systems
Noah Weisleder 1, Peihui Lin 1, Xiaoli Zhao 1, Matthew Orange 1, Hua Zhu 1, Jianjie Ma 1
1Department of Physiology and Biophysics, Robert Wood Johnson Medical School

Described here are protocols used to visualize the dynamic process of MG53-mediated cell membrane repair in whole animals and at the cellular level. These methods can be applied to investigate the cell biology of plasma membrane resealing and regenerative medicine.

image

Neuroscience

Cut-loading: A Useful Tool for Examining the Extent of Gap Junction Tracer Coupling Between Retinal Neurons
Hee Joo Choi 1, Christophe P. Ribelayga 2, Stuart C. Mangel 1
1Department of Neuroscience, Ohio State University College of Medicine, 2Department of Ophthalmology and Visual Science, University of Texas Medical School

An easy and convenient method to determine the extent of gap junction tracer coupling between retinal neurons is described. This technique enables one to investigate the function of the electrical synapses between neurons in the intact retina under different illumination conditions and at different times of the day and night.

image

Biology

Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles
Ki Ho Park 1, Leticia Brotto 2, Oanh Lehoang 1, Marco Brotto 2, Jianjie Ma 1, Xiaoli Zhao 1,3
1Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 2Muscle Biology Research Group, University of Missouri-Kansas City, 3Pharmacology division, College of Pharmacy, DHLRI, Ohio State University

We describe a method to directly measure muscle force, muscle power, contractile kinetics and fatigability of isolated skeletal muscles in an in vitro system using field stimulation. Valuable information on Ca2+ handling properties and contractile machinery of the muscle can be obtained using different stimulating protocols.

image

Biology

Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers
Ki Ho Park 1, Noah Weisleder 2, Jingsong Zhou 3, Kristyn Gumpper 1, Xinyu Zhou 1, Pu Duann 4, Jianjie Ma 1, Pei-Hui Lin 1
1Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 2Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 3Department of Molecular Biophysics and Physiology, Rush University Medical Center, 4Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center

Described here is a method to directly measure calcium sparks, the elementary units of Ca2+ release from sarcoplasmic reticulum in intact skeletal muscle fibers. This method utilizes osmotic-stress-mediated triggering of Ca2+ release from ryanodine receptor in isolated muscle fibers. The dynamics and homeostatic capacity of intracellular Ca2+ signaling can be employed to assess muscle function in health and disease.

image

Genetics

Methyl-binding DNA capture Sequencing for Patient Tissues
Rohit R. Jadhav 1, Yao V. Wang 1, Ya-Ting Hsu 1, Joseph Liu 1, Dawn Garcia 2, Zhao Lai 2, Tim H. M. Huang 1, Victor X. Jin 1
1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 2Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio

Here we present a protocol to investigate genome wide DNA methylation in large scale clinical patient screening studies using the Methyl-Binding DNA Capture sequencing (MBDCap-seq or MBD-seq) technology and the subsequent bioinformatics analysis pipeline.

image

Medicine

Use of a Piglet Model for the Study of Anesthetic-induced Developmental Neurotoxicity (AIDN): A Translational Neuroscience Approach
Emmett E. Whitaker 1,2, Christopher Z. Zheng 1, Bruno Bissonnette 1,2,3, Andrew D. Miller 4, Tanner L. Koppert 1,2, Joseph D. Tobias 1,2, Christopher R. Pierson 5,6, Fedias L. Christofi 1
1Department of Anesthesiology, Ohio State University College of Medicine, 2Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, 3Department of Anaesthesia and Critical Care Medicine, University of Toronto, 4Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, 5Department of Pathology and Anatomy, Ohio State University College of Medicine, 6Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital

Anesthesia-induced developmental neurotoxicity (AIDN) research has focused on rodents, which are not broadly applicable to humans. Non-human primate models are more relevant, but are cost-prohibitive and difficult to use for experimentation. The piglet, in contrast, is a clinically relevant, practical animal model ideal for the study of anesthetic neurotoxicity.

image

Medicine

Generation of a Chronic Obstructive Pulmonary Disease Model in Mice by Repeated Ozone Exposure
Zhongwei Sun 1,2, Feng Li 3, Xin Zhou 3, Wen Wang 1,2
1Cellular Biomedicine Group, Shanghai, 2Cellular Biomedicine Group, Cupertino, 3Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University

This study describes the successful generation of a new chronic obstructive pulmonary disease (COPD) animal model by repeatedly exposing mice to high concentrations of ozone.

image

Neuroscience

Adaptation of Microelectrode Array Technology for the Study of Anesthesia-induced Neurotoxicity in the Intact Piglet Brain
Emily D. Geyer *1, Prithvi A. Shetty *1, Christopher J. Suozzi *1, David Z. Allen *1,2, Pamela P. Benavidez *1,2, Joseph Liu *1,3, Charles N. Hollis 1, Greg A. Gerhardt 4, Jorge E. Quintero 4, Jason J. Burmeister 4, Emmett E. Whitaker 1,3
1Department of Anesthesiology, Ohio State University College of Medicine, 2Medical Student Research Program, Ohio State University College of Medicine, 3Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, 4Department of Neuroscience, University of Kentucky Medical Center

This study explores the novel use of enzyme-based microelectrode array (MEA) technology to monitor in vivo neurotransmitter activity in piglets. The hypothesis was that glutamate dysregulation contributes to the mechanism of anesthetic neurotoxicity. Here, we present a protocol to adapt MEA technology to study the mechanism of anesthesia-induced neurotoxicity.

image

Developmental Biology

A Protocol for Immunohistochemistry and RNA In-situ Distribution within Early Drosophila Embryo
Wei Zhang *1, Xinjuan Lei *1, Xin Zhou *2,3, Boling He 1, Liqin Xiao 1, Huimin Yue 1, Shulin Wang 1, Yuting Sun 1, Yajun Wu 1, Liyang Wang 1,4, George Ghartey-Kwansah 1, Odell D. Jones 5, Joseph L. Bryant 6, MengMeng Xu 7, Jianjie Ma 3, Xuehon Xu 1
1National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, 2Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, 3Ohio State University College of Medicine, 4Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 5University of Pennsylvania ULAR, 6University of Maryland School of Medicine, 7Columbia University Medical Center

Here, we describe a protocol for detection and localization of Drosophila embryo protein and RNA from collection to pre-embedding and embedding, immunostaining, and mRNA in situ hybridization.

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados