Iniciar sesión

Michael J. Crescenz Veterans Affairs Medical Center

2 ARTICLES PUBLISHED IN JoVE

image

Neuroscience

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling
Laura A. Struzyna *1,2,3, Dayo O. Adewole *1,2,3, Wisberty J. Gordián-Vélez 1,2,3, Michael R. Grovola 2,3, Justin C. Burrell 2,3, Kritika S. Katiyar 2,3,4, Dmitriy Petrov 2,3, James P. Harris 2,3, D. Kacy Cullen 2,3
1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

This manuscript details the fabrication of micro-tissue engineered neural networks: three-dimensional micron-sized constructs comprised of long aligned axonal tracts spanning aggregated neuronal population(s) encased in a tubular hydrogel. These living scaffolds can serve as functional relays to reconstruct or modulate neural circuitry or as biofidelic test-beds mimicking gray-white matter neuroanatomy.

image

JoVE Journal

Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration
Kritika S. Katiyar *1,2,3, Carla C. Winter *1,2,4, Wisberty J. Gordián-Vélez 1,2,4, John C. O'Donnell 1,2, Yeri J. Song 1,5, Nicole S. Hernandez 1,5, Laura A. Struzyna 1,2,4, D. Kacy Cullen 1,2,5
1Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 2Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 3School of Biomedical Engineering, Drexel University, 4Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 5Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania

We showcase the development of self-assembled, three-dimensional bundles of longitudinally aligned astrocytic somata and processes within a novel biomaterial encasement. These engineered "living scaffolds", exhibiting micron-scale diameter yet extending centimeters in length, may serve as test-beds to study neurodevelopmental mechanisms or facilitate neuroregeneration by directing neuronal migration and/or axonal pathfinding.

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados